
November 25th 2021

Gita Koblents

OMR Architecture: Vector IL Opcodes

Outline
▪ Motivation

▪ Current Data Structures

▪ High Level Problem Statement

▪ Proposal

▪ Examples

▪ Summary

2

Motivation
▪ We would like to support vector operations for various vector lengths – 64, 128, 256, 384, 512, 640,

… 2048 (in 128 increments on ARM SVE; 17 in total)

– To exploit current and future vector register sizes on Intel, Power, z, ARM

– Can be used by auto-SIMD

– Are necessary for the Panama(Vector API) project
▪ In Vector API, SPECIES_PREFERRED can have any length supported on a platform

– We should be able to use different sizes in one compilation

▪ Current approach

– 128-bit length is implied

– TR::DataTypes describe vector layout precisely, e.g. VectorInt32 is 4 32-bit integers

– Opcodes are ‘typelesss’, e.g. vadd, vconst, etc. but data type can be derived

▪ From children

▪ From symbol reference

▪ Cached on the node, e.g. for vconst

▪ Limitations of the current approach

– Only one length is supported

– Adding new data type enum for every possible combination of vector length and element type

– Current typeless opcode implementation reduces the number of opcodes but is error prone, e.g.

incorrect type can be derived while a node is being constructed or modified
3

4

Node class

Result type Operation Source Type
Query methods

Current Data Structures

*Is used to dereference Opcode Properties and other
tables

Example: i2f
Result Type: Float
Operation: conversion
Source Type: Int32

IlOpCodes
enum*

IlOpCode
class

Conceptually uniquely represents:

DataType
class

DataTypes
enum

getDataType()

High Level Problem Statement

▪ Definitions

E: a set of vector element types (e.g. Int8, Int16, Int32, … Double, etc.)

S: a set of vector lengths (64, 128, 256, etc)

O: a set of operations (load, add, sub, reduce, conv, …)

D: a set of all possible data types, D = E x S

OP: a set of all possible opcodes, OP = D x D x O (result type, source type*, operation)

Constraint 1: Optimizer should be agnostic to the number of vector elements.

Constraint 2: Codegen should be structured in such a way that asking for a specific member of D or OP is

not necessary and more general queries are used.

*a modifier for an operation, e.g. ((Int32, 128),(Int32, 128), load) means 4 integers need to be loaded and the

result will be 4 integers as well. A typical example of different source and result type is a conversion operation.

5

High Level Problem Statement cont’d
There are 3 ways to represent sets D and OP in a program in general and in OMR specifically:

(A) As classes. For example, set D can be a class DataType with two instance variables: _e and _s. Set OP

can be represented as class ILOpCode with 3 instance variables: _d1, _d2, _o
1. Considerable code changes to OMR and down-stream projects

(B) As integral value I that uniquely represents each member of the set. For example, a mapping function

can be provided that returns a unique integer given (d1, d2, o) and similar function for (e, s). There also

should be a function that returns each member of the tuple(or triple) given I. These functions can be

easily created by encoding each member into a certain group of bits inside I.
1. Not easy to see the meaning of the opcode or data type in the debugger

2. Compatibility with the existing OMR enums has to be ensured

(C) As a list of all set members in the form of constants(enums) that can be directly referred to in the source.
1. violates Constraints 1 and 2

2. although the size of the enum can be possibly smaller than the size of I (if only allowed combinations are listed)

creating and maintaining this list manually will be error-prone. A side table describing each enum’s properties will be

needed.

3. automatically generating enums with encoded values would be similar to (B)

6

Implementation Details for Proposal B

The following slides propose (B)

7

DataType
▪ SVE considerations

– SVE architecture introduces scalable vectors. There are various rules which vector lengths are allowed but

most notably vector lengths that are multiple of 128 bits, up to 2048 bits. This implies at least 16 lengths

– Only one vector length can be configured at a time. It can be queried at runtime and therefore known to

JIT

– It’s not completely clear if vector length can be reconfigured while a process is running but we can

consider simply not allowing it(at least in the short term)

▪ Which vector lengths should we support?

– Proposal: we should support a union of the following:

▪ Known vector lengths on supported architectures:

128: on Power, Z

128, 256, 512 on Intel

N: variable length on ARM SVE but only one value per process

▪ lengths required by known languages and libraries

64, 128, 256, 512: Vector API

▪ non-vector length: to indicate scalar values, we will use 0 to indicate non-vectors

▪ Total: 0, 64, 128, 256, 512, N = 6 lengths (3 bits)

8

DataType cont’d
▪ DataTypes can be encoded into 1 byte as:

– upper 4 bits: vector length (1 more bit than needed, reserved for future)

– lower 4 bits: existing scalar types (up to existing NumTypes enum)

– use static_assert (NumTypes < 16)

– if more space is needed in the future we will make DataTypes enum bigger

▪ getDataType() can be used as before, but values >= NumTypes are vector types and cannot be used as index

to any tables

▪ If unsupported vector length/type is specified:

– There will be limited number of places that will create original vectors: VectorAPIExpansion and

autoSIMD. Those will query codegen which length/types are supported: similar to the way it already

happens in autoSIMD.

– other places will create new types based on previously created types. Type consistency will be ensured

similar to way it is done for other types

9

ILOpCode
▪ Encode vector opcode’s result type, source type, and operation into TRILOpCode::_opcode (currently 4

bytes)

– DataType: 1 byte (see previous slide)

– Operation: 2 bytes

– Total: 1 byte result type + 1 byte source type + 2 bytes operation = 4 bytes

– If at some point, we run out of bits we can change ILOpCodes enum to fit long.

– use static_assert (LastOMROp <= xffff)

– ensure ILOpCodes enum is of size int32_t

▪ We can continue getting the value of a vector opcode and use it similar to other opcodes. We just won’t refer

to them by name in the source.

▪ Vector opcodes can be uniquely identified by query methods, such as isVector(),

getVectorResultElementType(), getVectorResultSize(), getVectorOperation(). Note that in this case,

vector operation(vadd, vreduce, vpermute) will be a separate enum that can be used to encode and group

vector operations

▪ Dispatch code that uses ILOpCodes enum to index static tables needs to be amended for vector type

▪ Portable AOT

– Invalidate method if compiled and actual vector length don’t match

10

11

enum DataTypes
Int8,
Int16,
Int32,
Int64,
Float,
Double,
Address,
Aggregate,

#include "il/DataTypesEnum.hpp"
NumTypes

”invisible DataTypes enums”

enum ILOpCodes : uint32_t

iadd
fadd
…
LastOMROp

”invisible ILOpCodes enums”

class DataType

DataTypes _type;
DataTypes getDataType();

isVector(){return _type>
NumTypes;}
createVectorType();
getVectorSize();
getVectorElementType();

class ILOpCode
private:
ILOpcodes _opcode;

public:
ILOpCodes getOpCodeValue();
DataType getDataType()
isVector() {return _opcode >

LastOMROp;}
createVectorOpcode(DataType,
DataType, vectorOperations);
getVectorResultElementType();
getVectorResultSize();
getVectorSourceElementType();
getVectorSourceSize();
getVectorOperation();

class Node

DataTypes _datatype;
// was used for typeless

ILOpCode _opCode;
opcodes

public:
DataType getDataType();

// will always ask opcode

Black: current
Red: new
• DataTypes greater than NumTypes and

ILOpCodes greater than LastOMROp
cannot be used to index any of the static
tables that we have

• Vector DataTypes and ILOpCodes will be
greater those values because their upper
halves will be non-zero

• Current Vector types and opcodes will be
removed

Code Changes

enum VectorOperations
vload,
vstore
vadd
vreduce
…

12

if (node->getDataType() == TR::Int32) { // will not match vector data type
…

}
else if (node->getDataType().isVector() &&

node->getDataType().getVectorResultElementType() == TR::Int32) {
}

DataType Examples

switch (node->getDataType()) {
case TR::Int32:
…
default:

if (node->getDataType().isVector() &&
node->getDataType().getVectorResultElementType() == TR::Int32) {

}
}

if (node1->getDataType() == node2->getDataType()) {
… // will work as before

}

13

static TR::ILOpCodes indirectLoadOpCode(TR::DataTypes type)
{
switch(type)

{
case TR::Int8: return TR::bloadi;
case TR::Int16: return TR::sloadi;
…
case TR::Float: return TR::floadi;
default:

if (type.isVectorType()) {
// result and source type are the same for vloadi
return type<<24 | type << 16 | TR::vloadi; }

else
TR_ASSERT(0, "no load opcode for this datatype");

}
return TR::BadILOp;
}

Node Creation Examples

// inside createVectorOpCode()

TR::ILOpCodes loadOpCode = TR::ILOpCode::indirectLoadOpCode(TR::Int8);

TR::ILOpCodes loadOpCode = TR::ILOpCode::indirectLoadOpCode(createVectorType(Int32,4)); // 4 integers

14

if (node->getOpCodeValue() == TR::iadd) { // will not match vector opcode
…

}
else if (node->getOpCode().isVectorAdd() &&

node->getOpCode().getVectorResultElementType() == TR::Int32) {
}

Using Opcodes Examples

switch (node->getOpCodeValue()) {
case TR::iadd:
…
default:

if (node->getOpCode().isVectorAdd() &&
node->getOpCode().getVectorResultElementType() == TR::Int32) {

}
}

if (node1->getOpCodeValue() == node2->getOpCodeValue()) {
… // will work as before

}

15

getName(ILOpCode opcode) {

If (opcode.isVector()) {
resTypeString = “”;
if (opcode.getVectorResultType() != opcode.getVectorSourceType())

resTypeString = “_” . getName(opcode.getVectorResultType());
srcTypeString = getName(opcode.getVectorSourceType());
operationString = getName(opcode.getVectorOperation());

name = operationString . “_” . srcTypeString . “resTypeString”;
}

}

Trace File Examples

vadd_ix4
vload_ix4
vload_ix4

vconv_ix4_fx4
vload_ix4

Summary

▪ Full encapsulation of the opcode representation

▪ Conceptually close to the current(non-vector opcodes) approach of keeping all the info in the opcode

▪ No size increase: only vector opcodes that are used in the method will be instantiated

▪ Isolated: no changes to the existing non-vector code

▪ No references to specific vector enums in the code

▪ Can be extended and optimized in the future

– for example, utilize the fact that for most of the opcodes result and source types are the same

16

Backup Slides

17

