Parallelism & Adaptive Garbage Collection Threading

Salman Rana
(Special Thanks to Aleksandar Micic)

Open@

Ove I‘VieW OMR

* Brief Overview of GC and OMR GC Technology

« Background: GC Parallelization
Throughput and Pause Time

 Need For Adaptive Threading
Parallelization Overhead

* Adaptive Threading: Core Idea

 GCInternals & Adaptive Threading Implementation
Dispatcher & Tasks

e Performance Results

e Future Work
J9

Garbage Collection o

“garbage collection (GC) is a form of automatic memory
management. The garbage collector attempts to reclaim memory
which was allocated by the program, but is no longer referenced”

/v parallelism

e Causes unpredictable application pauses
» Runtime Costs

Optimizations

\) Adaptive Threading

J9

https://en.wikipedia.org/wiki/Memory_management

Garbage Collection OMR

* From high (user) level it's compromise between:
1) application throughput
2) average/worst GC pause
3) sometimes footprint (heap/native memory consumption)

« Internally, technology used may be significantly different....
« Flat heap vs (fixed sized) regions
« STW (stop the world) vs concurrent
* First fit vs best fit allocation
« Generational or not

J9

OMR GC Technology o

Policy Core technology Pros Cons
optthruput STW Mark and Sweep (and optionally | Very good throughput, but still High degree of heap
Compact) typically inferior to gencon fragmentation, high
(unless RS overhead is high) pause times
optavgpause | Concurrent Mark and Sweep (and Lower pause times than Slightly lower
optionally Compact) optthruput throughput than

optthruput. Higher
heap pressure due to
floating garbage

gencon - Generational (Tenure+Nursery) Typically best throughput, low Tenure fragmentation
- Local Copying GC On Nursery average pauses may lead to global
- Concurrent Global Mark, Sweep (and | [DEFAULT policy in OpenJ9] compact

optionally Compact)

$ java App

J9

Collector Internal High-Level View

Collector

il ook GlobaiCollector
l T
ConcurrentScavenger
==
SegregatedGC ParallelGlobalGC RealTimeGC IncrementalGenerationalGC

/(BalanoedGC)

i

ConcurrentSweepGC ConcurrentGC
i
ConcurrentGCSATB ConcurrentGCincrementalUpdate,

/‘- (Global Collector))

&

OMR

Open@

Garbage Collection OMR

STW GC Cycle

GC Pause Time
Theha
r
e Relocate Objects Update References -
App App
Thread Thread

Pause-Less (Concurrent) GC Cycle

Much Shorter GC Relocate Update
GC Pause Objects References
b Time
P App
e
App Root Set y Ap

Open@

Parallelism

Utilize available Resources
* Multi-core processors

All Collectors in major VMs

Decrease pause time

Tasks parallelized

» GC operations completed in parallel by multiple worker/helper threads
« e.g., object graph traversal by multiple threads

» key in reducing GC cycle times

Total GC Threads = # Hardware Threads
o XX:ParallelGCThreads=X

&

OMR

J9

GC Parallelism OMR

GC Pause Time
e Relocate Objects Update References i

App App
Thread Thread

Worker
Thread

Worker
Thread

Main GC
Thread

Worker
Thread

Worker

Thread O oe n@

Parallelism OMR

Worker
Thread

Worker
Thread

Main GC
Thread

Worker
Thread

Worker
Thread

Worker/Main Thread Garbage Collect

Main Setup/Report & Worker Complete Task &
Start Worker Threads Main Sync. Completion/Report

J9

&

OMR

So What’'s the Issue?

Open@

time (ms)

3.5 ——quarkus-baseline-verbose log
——+-—-quarkus-smart-verbose. log

3.0

25

0.0

48 Threads
Utilized

4 Threads
Utilized

0:24 0:36

0:48 1:00 1:12 1:24 1:36 1:48 2:00
time (minutes)

OMR

Open@

Parallelism

e Is there a cost?

» Additional requirements with multi-threading

 Synchronize (critical sections and accessing global
resources)

* Manage threads (dispatch and suspend)

Worker/Main Thread Garbage Collect

Main Setup/Report & Worker Complete Task &
Start Worker Threads Main Sync. Completion/Report

OMR

J9

Parallelism O%R

* They may need to synchronize

« E.g., Mark Map: one word (64bit) my contain bit for multiple objects.
Different threads may be marking those objects and race on updating
the word. Atomic operation (compare&swap) is used

» GC threads frequently push/pop to/from Work Stack. Mutex is used

* Notifying idle threads

Worker/Main Thread Garbage Collect

Main Setup/Report & Worker Complete Task &
Start Worker Threads Main Sync. Completion/Report

J9

Parallelism OMR

* noticeable overhead associated with parallelizing tasks

» Little work to be distributed
 Workload
* Object Graph

* CPU usage / Multi VM scenario

* This overhead can be significant as it increases proportionally with
the number of threads utilized.

Worker/Main Thread Garbage Collect

Main Setup/Report & Worker Complete Task &
Start Worker Threads Main Sync. Completion/Report

J9

time (ms)

3.5 ——quarkus-baseline-verbose log
——+-—-quarkus-smart-verbose. log

3.0

25

0.0

48 Threads
Utilized

4 Threads
Utilized

0:24 0:36

0:48 1:00 1:12 1:24 1:36 1:48 2:00
time (minutes)

OMR

Open@

OMR

https://medium.com/road-less-ventured/too-many-cooks-in-the-kitchen-3ad8507af96a

Open@

OMR

o
/
L -
shutterstock.com + 1719028660

Too many? Not enough?

Open@

Suboptimal vs Detrimental Parallelism

* Net Loss
* Lost Gains
Threads | Score |Scav.Avg.
48 222,567 | 1.60ms
8 255,611 | 0.60 ms
4 261,737 | 0.35ms

Threads Score
48 80,543

8 93,824

4 91,166

&

OMR

J9

Adaptive Threading

O%R

OMR

Persons vs Time to Completion

Time to completion

- 9

A &

S

T - £
E _ &
= S
@ - &
4 >
ST &
2T & Each additional Thread | becomes
g | anet loss beyond this number
2T >
i R BTN

Worker/Helper Threads

https://codescene.com/blog/visualize-brooks-law/

J9

OMR

shutterstock.com + 1719028660

Open@

Adaptive Threading o

* When to adjust and how much to adjust by

» Seek equilibrium point, where parallelization results in peak
performance

* Dynamic
« workload and load distribution change
 pick up on on threads being shared across VMs (CPU Usage)

 Recommendation must not be invasive
 there should not be adverse effects given anomalies

« Adaptive Threading vs Traditional Tuning
J9

Adaptive Threading o

* Model and Heuristics
« Optimal thread count can be projected
» thread count can be adjusted between cycles

» Systematic approach based on
* # of thread utilized

« Overhead data (busy/stall times for managing and synchronizing
threads) aggregated from utilized threads of previous GCs

J9

Busy and Stall Times OMR

 Drives Adaptive Threading

« Busy time = time a thread is performing useful GC work which contributes to
completing the cycle

Scanning Objects

Root Processing

RS processing

Copy or Marking Objects

e Stall time time a thread is doing non-useful/trivial work or time that it’s idle (not
doing any work).

Push/pop something to/from shared global list (e.g., scan list)
Acquire synchronization monitor (contention)

Idle at a synchronization point

Idle waiting for work

Wake up from idleness and start running

Notify idle threads (the time it takes for a thread to notify idle threads)

J9

Busy and Stall Times 3

* Different types of stalls have different characteristics and
varying dependency on utilized threads.

« we must distinguish between
» synchronization stall (idle waiting for threads to synchronize)
» resume stall (overhead to resume threads, also includes notify stall)
« Idle waiting for work

These stall times respond differently when changing utilized threads

J9

OMR

https://medium.com/road-less-ventured/too-many-cooks-in-the-kitchen-3ad8507af96a

Open@

Time

Suspended Threads Notified to Wake up

I Overhead for Last Thread
i T i to Wakeup Suspended Threads

)
Last Thread Reach Sync. Point ~

<4
Worker 1 = -I Busy m Busy I L

Worker 2 = 'I Busy) Sync. | Resumey psy }'»

stall
Worker3 = { Busy @ Sync. Stall Re;;’,';e A Busy } "
Worker 4 '-'.I' Busy ‘ nc. R"sst:""” A Busy } = >

\
e idle waiting for | Overhead of Resuming Thread

' threads to sync. _ once all threads synchronized
First Thread Reach Sync. Point

Iso)

ICI

Synchronization Point Enter \

Synchronization Point Exit

Busy Time Measure
Synchronization Stall Time Measure

Resume Stall Time Measure

Notify Stall Time Measure /

OMR

J9

Adaptive Threading Model OMR

One such implementation of the model can be derived by finding a minimum of the following GC time function
(used to project total duration of GC for m threads, with observed busy and stall times while performing GC with
n threads):

Time. (m,n,b,s) = b * (ﬁ) + 5% (T)

J9

Adaptive Threading Model

(1) Number of Optimal Threads = m(n,b,s) = n

&

OMR

X+1 b

X * S

N

(2) Recommended Threads For Next Cycle =| ((m(n,b,s) + H)*(1— W)+ (n*xW) |

X+1
m(n, % Stall) = n *

1

— %

X

(

|
%Stall

Y

J9

Adaptive Threading Model OMR

Current Working Threads (n)

% Stall 2 4 12 18 24 36 48 64
Recommended Threads

99% 1 3 7 10 14 20 27 36
| 95% 2 3 8 11 15 22 30 40
Lo 90% 2 3 8 12 16 24 32 42
85% 2 3 9 13 17 26 34 46
80% 2 3 9 14 18 27 36 48
75% 2 4 10 15 19 29 38 51
70% 2 4 10 15 20 30 40 53
65% 2 4 11 16 21 32 42 56
60% 2 4 11 17 22 33 44 58
55% 2 4 12 17 23 35 46 61
50% 2 4 12 18 24 36 48 64
45% 2 5 13 19 26 38 51 64
40% 3 5 14 20 27 40 54 64
35% 3 5 15 22 29 43 57 64
30% 3 S 16 23 31 46 61 64
25% 3 6 17 25 33 50 64 64
20% 3 6 18 27 36 54 64 64
15% 4 7 21 31 41 61 64 64
10% 4 8 24 36 48 64 64 64
5% 6 11 33 49 64 64 64 64
1% 11 22 64 64 64 64 64 64

Dynamic Threading Matrix Of Inputs and Resulting Qutput (W =50%,X =1 & H = 0.85) 19

Worker/Main Thread Garbage Collect

Main Setup/Report &
Start Worker Threads

Worker Complete Task &
Main Sync. Completion/Report

® OMR

|

Execute GC Main
Thread

l

Setup For GC
(Pre-collection Routine)

Dispatch Worker Thread
(Runs In parallel)

v 4
]
Main Thread
Worker Thread Collection
Collect

-p Complete Cycle
(Post-collection Routine)

l

® J9

Main Setup/Report &
Start Worker Threads

Worker/Main Thread Garbage Collect

End

Worker Complete Task &
Main Sync. Completion/Report

Start

|

Execute GC Main
Thread

N Setup For GC |
(Pre-collection Routine)

Dispatch Worker Thread
(Runs In parallel)

v 4
]
Main Thread
Worker Thread Collection
Collect

-p Complete Cycle
(Post-collection Routine)

l

OMR

J9

Start

Main Setup/Report"8
Start Worker Threads

End

Start

Thread

Execute GC Main

Setup For GC

(Pre-collection Routine)

Dispatch Worker Thread

(Runs In parallel)

Worker Thread
Collect

Main Thread
Collection

-p Complete Cycle
(Post-collection Routine)

l

OMR

J9

Start

Main Setup/Report &
Start Worker Threads

Worker/Main Thread Garbage Collect

Worker Complete Task &

Malg Sync. Completion/Rep#

Start

|

Execute GC Main

Thread

l

Setup For GC |
(Pre-collection Routine)

Dispatch Worker Thread

(Runs in parallel)
v 4
]
Main Thread
Worker Thread Collection
Collect

(Post-collection Routine)

Complete Cycle

OMR

J9

Start

Main Setup/Report &
Start Worker Threads

Worker/Main Thread Garbage Collect

Start

YGST

Suspend Main
Thread Until All Slave
No Threads Complete
v
Agaregate
Overhead (Stall) [@—
Metrics

Y

Get Total Cycle Time
and Compute % Stall

Y

Compute Optimal
Thread Count

Y

Determine/Set
Number of Threads
To Recommend

l

End

OMR

J9

\ Main Setup/Report &
“tart Worker Thread;
‘ y

Worker/Main Thread Garbage Collect

End

Worker Complete Task &
Main Sync. Completion/Report

Start

|

Invoke Parallel
Dispatcher to Start
Worker Thread
Collection

Is there

Get Maximum or
User Specified Yes

Thread Count l

Get
Recommended
Thread Count

l

| Dispatch Threads

l

End

J9

OMR

Start End
Main Setup/Report & : Worker Complete Task &
Start Worker Threads P \\Main Sync. Completion/Report

| l“\ " b
Ny, o,

Open@

OMR

Work Thread Garbage Collect

J9

Work Thread Garbage Collect

ks‘c‘é /I ’ P - ’ O/
/) ,/, o < ®/ \Q@
i %)
2 s $ (9
~ X %
[=lcompleteScan() ,%- %
Work Thread Garbage Collect
& %, %
%) %
P \9@
C RS,
/ % %
: % &

", [=lscavengeRemeberedSet()
A —
scanRoots() I=! rescanThreadSlots()
flushRemeberedSet() '
scanClearabled()
flush() 1

\

OMR

J9

Start

l

Invoke Parallel
Dispatcher to Start
Worker Thread
Collection

Get Maximum or
User Specified
Thread Count

Get
Recommended
Thread Count

Dispatch Threads

Flowchart 2: GC Pre-collection
Routine for Adaptive Threading

l

End

e e e e e e e e e e e e e e e m, e e e e e e e e e e e e e e e e e

=== Setup For GC

Start

Execute GC Main
Thread

(Pre-collection Routine)

Dispatch Worker Thread
(Runs in parallei)

Main Thread

Worker Thread Collection

Collect

- Complete Cycle
(Post-collection Routine)

l

End

Flowchart 1: GC Routine Outline

]
|
-----------------—‘-—----------

!
1
1
1
1

Start

No

Aggregate
Overhead (Stall)
Metrics

Y

YeSj

Suspend Main

Threads Complete

Thread Until All Slave

<—

Get Total Cycle Time
and Compute % Stall

Y

Compute Optimal
Thread Count

Y

Determine/Set
Number of Threads
To Recommend

|

OMR

J9

% Stall

0.00%

Time (microseconds)
g 8 8 8

g

g

o

% Stall & Utalized Threads For Each Cycle

61.49%76%
60.88% 5% 58,

18% 5,

s 14 1

% Stall

—Threads Used &

67.64%

61.95R.44%, 62.55% 40
$5.94% W

30
20

|

%‘ ‘ ‘10
1 17776666666 s

"

|

|

|

i
#GGG‘GG
|

" . "
‘ |

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Scavenge Cycle

Figure 3

Cycle Time Breake Down - Busy time & Stall Time

3 35 36 37 38

39 40 41 42 43 44 45 46 47 48 49 50 51

M Aggregated Stall Time
M Busy Time

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 49

Scavenge Cycle

Threads

OMR

Open@

Adaptive Threading

IVM Mean GC

time (ms)
VM1-VM4-Baseline 91.63
VMS5-Baseline log 14.4
VM6-Baseline.log 22.1

Table 4: Multi-JVM Baseline - 6 JVMs

VM Mean GC

time (ms)
VM1-VM4-Dynamic.log 84.68
VMS5-Dynamic.log 6.38
VM6-Dynamic.log 21.1

Table 5: Multi-JVM Dynamic - 6 JVMs

OMR

J9

30

25

of Collection Cycles
& s

-
o

0

OMR

DYNAMIC THREADING - VM1-VM4 THREAD DISTRIBUTION

VM l\./Iean G
11
7‘*
VM 1-VM4-Dynamic.log 84.68
VM6—Dynamic.log 21.1

Table 5: Multi-JVM Dynamic - 6 JVMs

0000000000000000000O00O0DO0O0DO0O00O900

12

26

16 16

18
17
14
12
10
7 7 7
6 6 B
|...||I|l

34567 8 910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364

Thread Bucket

Figure 6: VM1-VM4 Thread Distribution

of Collection Cycles

140

120

100

80

60

40

20

0

DYNAMIC THREADING - VM5 THREAD DISTRIBUTION

OMR

119 Mean GC
JVM -
time (ms)
&k VML —84.68\
{ VM5-Dynamic.log 6.38
7171 : vy o8
65
Table 5: Multi-JVM Dynamic - 6 JVMs
23 23
10
000 loooloooooo10000000000loooooooooooloooooololoooooooooi

12345678 910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364

Thread Bucket

Figure 7: VM5 Thread Distribution

Open’@

OMR
DYNAMIC THREADING - VM6 THREAD DISTRIBUTION
60
Mean GC 52
" VM . .
time (ms)
VM 1-VM4-Dynamic.log 84.68 - 40
§4° W 638
o .
VM6-Dynamic.lo 21.1 3
% - <\ b L] |> 2928 30,9 f 30 § 50 § 30 q
S Table 5: Multi-JVM Dynamic - 6 JVMs
:‘2 20 18
14
12 12
10 10
10 8
ooooooooooooooooooooooooooo1oo‘1010||||| lII'lII
0 »
1234567 8 910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364

Thread Bucket

Figure 8: VM6 Thread Distribution

Open@

&

OMR

Future Work

J9

Thank You

O%R

