
Parallelism & Adaptive Garbage Collection Threading

Salman Rana
(Special Thanks to Aleksandar Micic)

Overview
• Brief Overview of GC and OMR GC Technology

• Background: GC Parallelization
• Throughput and Pause Time

• Need For Adaptive Threading
• Parallelization Overhead

• Adaptive Threading: Core Idea

• GC Internals & Adaptive Threading Implementation
• Dispatcher & Tasks

• Performance Results

• Future Work

Garbage Collection

“garbage collection (GC) is a form of automatic memory
management. The garbage collector attempts to reclaim memory
which was allocated by the program, but is no longer referenced”

• Causes unpredictable application pauses
• Runtime Costs

….

Optimizations

parallelism

Adaptive Threading

https://en.wikipedia.org/wiki/Memory_management

• From high (user) level it's compromise between:
1) application throughput
2) average/worst GC pause
3) sometimes footprint (heap/native memory consumption)

• Internally, technology used may be significantly different….
• Flat heap vs (fixed sized) regions
• STW (stop the world) vs concurrent
• First fit vs best fit allocation
• Generational or not

Garbage Collection

Policy Core technology Pros Cons

optthruput STW Mark and Sweep (and optionally
Compact)

Very good throughput, but still
typically inferior to gencon
(unless RS overhead is high)

High degree of heap
fragmentation, high
pause times

optavgpause Concurrent Mark and Sweep (and
optionally Compact)

Lower pause times than
optthruput

Slightly lower
throughput than
optthruput. Higher
heap pressure due to
floating garbage

gencon - Generational (Tenure+Nursery)
- Local Copying GC On Nursery
- Concurrent Global Mark, Sweep (and
optionally Compact)

Typically best throughput, low
average pauses
[DEFAULT policy in OpenJ9]

Tenure fragmentation
may lead to global
compact

*Balanced & Realtime (Implemented in OpenJ9 using OMR components)

OMR GC Technology

$ java –Xgcpolicy=[gencon,optthruput…] App

Collector Internal High-Level View

Garbage Collection

STW GC Cycle

Pause-Less (Concurrent) GC Cycle

Parallelism
• Utilize available Resources

• Multi-core processors

• All Collectors in major VMs

• Decrease pause time

• Tasks parallelized
• GC operations completed in parallel by multiple worker/helper threads
• e.g., object graph traversal by multiple threads
• key in reducing GC cycle times

• Total GC Threads = # Hardware Threads
• XX:ParallelGCThreads=X

GC Parallelism

Main GC
Thread

Worker
Thread

Worker
Thread

Worker
Thread

Worker
Thread

Parallelism

So What’s the Issue?

Parallelism

• Is there a cost?

• Additional requirements with multi-threading
• Synchronize (critical sections and accessing global

resources)
• Manage threads (dispatch and suspend)

Parallelism

• They may need to synchronize
• E.g., Mark Map: one word (64bit) my contain bit for multiple objects.

Different threads may be marking those objects and race on updating
the word. Atomic operation (compare&swap) is used

• GC threads frequently push/pop to/from Work Stack. Mutex is used

• Notifying idle threads

Parallelism
• noticeable overhead associated with parallelizing tasks

• Little work to be distributed
• Workload
• Object Graph

• CPU usage / Multi VM scenario

• This overhead can be significant as it increases proportionally with
the number of threads utilized.

https://medium.com/road-less-ventured/too-many-cooks-in-the-kitchen-3ad8507af96a

Too many? Not enough?

Suboptimal vs Detrimental Parallelism

• Net Loss
• Lost Gains

Adaptive Threading

https://codescene.com/blog/visualize-brooks-law/

G
C

Pa
us

e
(C

yc
le

 T
im

e)

Worker/Helper Threads

Thread

Adaptive Threading
• When to adjust and how much to adjust by

• Seek equilibrium point, where parallelization results in peak
performance

• Dynamic
• workload and load distribution change
• pick up on on threads being shared across VMs (CPU Usage)

• Recommendation must not be invasive
• there should not be adverse effects given anomalies

• Adaptive Threading vs Traditional Tuning

Adaptive Threading

• Model and Heuristics
• Optimal thread count can be projected
• thread count can be adjusted between cycles

• Systematic approach based on
• # of thread utilized
• Overhead data (busy/stall times for managing and synchronizing

threads) aggregated from utilized threads of previous GCs

Busy and Stall Times
• Drives Adaptive Threading

• Busy time = time a thread is performing useful GC work which contributes to
completing the cycle
• Scanning Objects
• Root Processing
• RS processing
• Copy or Marking Objects

• Stall time time a thread is doing non-useful/trivial work or time that it’s idle (not
doing any work).
• Push/pop something to/from shared global list (e.g., scan list)
• Acquire synchronization monitor (contention)
• Idle at a synchronization point
• Idle waiting for work
• Wake up from idleness and start running
• Notify idle threads (the time it takes for a thread to notify idle threads)

Busy and Stall Times

• Different types of stalls have different characteristics and
varying dependency on utilized threads.

• we must distinguish between
• synchronization stall (idle waiting for threads to synchronize)
• resume stall (overhead to resume threads, also includes notify stall)
• Idle waiting for work

These stall times respond differently when changing utilized threads

https://medium.com/road-less-ventured/too-many-cooks-in-the-kitchen-3ad8507af96a

Adaptive Threading Model

One such implementation of the model can be derived by finding a minimum of the following GC time function
(used to project total duration of GC for m threads, with observed busy and stall times while performing GC with
n threads):

Adaptive Threading Model

Adaptive Threading Model

Adaptive Threading

Future Work

Thank You

