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* Brief Overview of GC and OMR GC Technology

« Background: GC Parallelization
Throughput and Pause Time

 Need For Adaptive Threading
Parallelization Overhead

* Adaptive Threading: Core Idea

 GCInternals & Adaptive Threading Implementation
Dispatcher & Tasks

e Performance Results

e Future Work
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Garbage Collection o

“garbage collection (GC) is a form of automatic memory
management. The garbage collector attempts to reclaim memory
which was allocated by the program, but is no longer referenced”

/v parallelism

e Causes unpredictable application pauses
» Runtime Costs

Optimizations

\) Adaptive Threading
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https://en.wikipedia.org/wiki/Memory_management

Garbage Collection OMR

* From high (user) level it's compromise between:
1) application throughput
2) average/worst GC pause
3) sometimes footprint (heap/native memory consumption)

« Internally, technology used may be significantly different....
« Flat heap vs (fixed sized) regions
« STW (stop the world) vs concurrent
*  First fit vs best fit allocation
« Generational or not
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OMR GC Technology o

Policy Core technology Pros Cons
optthruput STW Mark and Sweep (and optionally | Very good throughput, but still High degree of heap
Compact) typically inferior to gencon fragmentation, high
(unless RS overhead is high) pause times
optavgpause | Concurrent Mark and Sweep (and Lower pause times than Slightly lower
optionally Compact) optthruput throughput than

optthruput. Higher
heap pressure due to
floating garbage

gencon - Generational (Tenure+Nursery) Typically best throughput, low Tenure fragmentation
- Local Copying GC On Nursery average pauses may lead to global
- Concurrent Global Mark, Sweep (and | [DEFAULT policy in OpenJ9] compact

optionally Compact)

$ java App
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Collector Internal High-Level View
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Garbage Collection OMR

STW GC Cycle

GC Pause Time
Theha
r
e Relocate Objects Update References -
App App
Thread Thread

Pause-Less (Concurrent) GC Cycle

Much Shorter GC Relocate Update
GC Pause Objects References
b Time
P App
e
App Root Set y Ap
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Parallelism

Utilize available Resources
*  Multi-core processors

All Collectors in major VMs

Decrease pause time

Tasks parallelized

» GC operations completed in parallel by multiple worker/helper threads
« e.g., object graph traversal by multiple threads

» key in reducing GC cycle times

Total GC Threads = # Hardware Threads
o XX:ParallelGCThreads=X

&
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GC Parallelism OMR

GC Pause Time
e Relocate Objects Update References i
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Parallelism OMR

Worker
Thread

Worker
Thread

Main GC
Thread

Worker
Thread

Worker
Thread

Worker/Main Thread Garbage Collect

Main Setup/Report & Worker Complete Task &
Start Worker Threads Main Sync. Completion/Report

J9



&

OMR

So What’'s the Issue?
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Parallelism

e Is there a cost?

» Additional requirements with multi-threading

 Synchronize (critical sections and accessing global
resources)

* Manage threads (dispatch and suspend)

Worker/Main Thread Garbage Collect

Main Setup/Report & Worker Complete Task &
Start Worker Threads Main Sync. Completion/Report

OMR
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Parallelism O%R

* They may need to synchronize

« E.g., Mark Map: one word (64bit) my contain bit for multiple objects.
Different threads may be marking those objects and race on updating
the word. Atomic operation (compare&swap) is used

» GC threads frequently push/pop to/from Work Stack. Mutex is used

* Notifying idle threads

Worker/Main Thread Garbage Collect

Main Setup/Report & Worker Complete Task &
Start Worker Threads Main Sync. Completion/Report
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Parallelism OMR

* noticeable overhead associated with parallelizing tasks

» Little work to be distributed
 Workload
* Object Graph

* CPU usage / Multi VM scenario

* This overhead can be significant as it increases proportionally with
the number of threads utilized.

Worker/Main Thread Garbage Collect

Main Setup/Report & Worker Complete Task &
Start Worker Threads Main Sync. Completion/Report
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OMR

https://medium.com/road-less-ventured/too-many-cooks-in-the-kitchen-3ad8507af96a
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OMR
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shutterstock.com + 1719028660

Too many? Not enough?
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Suboptimal vs Detrimental Parallelism

* Net Loss
* Lost Gains
Threads | Score |Scav.Avg.
48 222,567 | 1.60ms
8 255,611 | 0.60 ms
4 261,737 | 0.35ms

Threads Score
48 80,543

8 93,824

4 91,166

&
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Adaptive Threading
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Persons vs Time to Completion

Time to completion
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https://codescene.com/blog/visualize-brooks-law/
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Adaptive Threading o

* When to adjust and how much to adjust by

» Seek equilibrium point, where parallelization results in peak
performance

* Dynamic
« workload and load distribution change
 pick up on on threads being shared across VMs (CPU Usage)

 Recommendation must not be invasive
 there should not be adverse effects given anomalies

« Adaptive Threading vs Traditional Tuning
J9



Adaptive Threading o

* Model and Heuristics
« Optimal thread count can be projected
» thread count can be adjusted between cycles

» Systematic approach based on
* # of thread utilized

« Overhead data (busy/stall times for managing and synchronizing
threads) aggregated from utilized threads of previous GCs

J9



Busy and Stall Times OMR

 Drives Adaptive Threading

« Busy time = time a thread is performing useful GC work which contributes to
completing the cycle

Scanning Objects

Root Processing

RS processing

Copy or Marking Objects

e Stall time time a thread is doing non-useful/trivial work or time that it’s idle (not
doing any work).

Push/pop something to/from shared global list (e.g., scan list)
Acquire synchronization monitor (contention)

Idle at a synchronization point

Idle waiting for work

Wake up from idleness and start running

Notify idle threads (the time it takes for a thread to notify idle threads)

J9



Busy and Stall Times 3

* Different types of stalls have different characteristics and
varying dependency on utilized threads.

« we must distinguish between
» synchronization stall (idle waiting for threads to synchronize)
» resume stall (overhead to resume threads, also includes notify stall)
« Idle waiting for work

These stall times respond differently when changing utilized threads
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https://medium.com/road-less-ventured/too-many-cooks-in-the-kitchen-3ad8507af96a
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Time

Suspended Threads Notified to Wake up
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Adaptive Threading Model OMR

One such implementation of the model can be derived by finding a minimum of the following GC time function
(used to project total duration of GC for m threads, with observed busy and stall times while performing GC with
n threads):

Time. (m,n,b,s) = b * (ﬁ) + 5% (T)
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Adaptive Threading Model

(1) Number of Optimal Threads = m(n,b,s) = n

&

OMR

X+1 b

X * S

N

(2) Recommended Threads For Next Cycle =| ((m(n,b,s) + H)*(1— W)+ (n*xW) |

X+1
m(n, % Stall) = n *

1

— %

X

(

|
%Stall

Y
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Adaptive Threading Model OMR

Current Working Threads (n)

% Stall 2 4 12 18 24 36 48 64
Recommended Threads

99% 1 3 7 10 14 20 27 36
| 95% 2 3 8 11 15 22 30 40
Lo 90% 2 3 8 12 16 24 32 42
85% 2 3 9 13 17 26 34 46
80% 2 3 9 14 18 27 36 48
75% 2 4 10 15 19 29 38 51
70% 2 4 10 15 20 30 40 53
65% 2 4 11 16 21 32 42 56
60% 2 4 11 17 22 33 44 58
55% 2 4 12 17 23 35 46 61
50% 2 4 12 18 24 36 48 64
45% 2 5 13 19 26 38 51 64
40% 3 5 14 20 27 40 54 64
35% 3 5 15 22 29 43 57 64
30% 3 S 16 23 31 46 61 64
25% 3 6 17 25 33 50 64 64
20% 3 6 18 27 36 54 64 64
15% 4 7 21 31 41 61 64 64
10% 4 8 24 36 48 64 64 64
5% 6 11 33 49 64 64 64 64
1% 11 22 64 64 64 64 64 64

Dynamic Threading Matrix Of Inputs and Resulting Qutput (W =50%,X =1 & H = 0.85) 19



Worker/Main Thread Garbage Collect

Main Setup/Report &
Start Worker Threads

Worker Complete Task &
Main Sync. Completion/Report

® OMR

|

Execute GC Main
Thread

l

Setup For GC
(Pre-collection Routine)

Dispatch Worker Thread
(Runs In parallel)

v 4
]
Main Thread
Worker Thread Collection
Collect

-p Complete Cycle
(Post-collection Routine)

l
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Main Setup/Report &
Start Worker Threads

Worker/Main Thread Garbage Collect

End

Worker Complete Task &
Main Sync. Completion/Report

Start

|

Execute GC Main
Thread

N Setup For GC |
(Pre-collection Routine)

Dispatch Worker Thread
(Runs In parallel)

v 4
]
Main Thread
Worker Thread Collection
Collect

-p Complete Cycle
(Post-collection Routine)

l
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Start

Main Setup/Report"8
Start Worker Threads

End

Start

Thread

Execute GC Main

Setup For GC

(Pre-collection Routine)

Dispatch Worker Thread

(Runs In parallel)

Worker Thread
Collect

Main Thread
Collection

-p Complete Cycle
(Post-collection Routine)

l
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Start

Main Setup/Report &
Start Worker Threads

Worker/Main Thread Garbage Collect

Worker Complete Task &

Malg Sync. Completion/Rep#

Start

|

Execute GC Main

Thread

l

Setup For GC |
(Pre-collection Routine)

Dispatch Worker Thread

(Runs in parallel)
v 4
]
Main Thread
Worker Thread Collection
Collect
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Complete Cycle
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Start

Main Setup/Report &
Start Worker Threads

Worker/Main Thread Garbage Collect
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\ Main Setup/Report &
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Worker/Main Thread Garbage Collect

End

Worker Complete Task &
Main Sync. Completion/Report
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Work Thread Garbage Collect
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Work Thread Garbage Collect
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Start

l

Invoke Parallel
Dispatcher to Start
Worker Thread
Collection

Get Maximum or
User Specified
Thread Count

Get
Recommended
Thread Count

Dispatch Threads

Flowchart 2: GC Pre-collection
Routine for Adaptive Threading
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Adaptive Threading

IVM Mean GC

time (ms)
VM1-VM4-Baseline 91.63
VMS5-Baseline log 14.4
VM6-Baseline.log 22.1

Table 4: Multi-JVM Baseline - 6 JVMs

VM Mean GC

time (ms)
VM1-VM4-Dynamic.log 84.68
VMS5-Dynamic.log 6.38
VM6-Dynamic.log 21.1

Table 5: Multi-JVM Dynamic - 6 JVMs
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Figure 6: VM1-VM4 Thread Distribution
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Figure 8: VM6 Thread Distribution
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Future Work
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