
Tackling Variability Implementation
Challenges in Eclipse OMR

Batyr Nuryyev, Sarah Nadi, Leonardo Banderali
{nuryyev, nadi}@ualberta.ca

leob@ibm.com

Eclipse OMR
Eclipse OMR is a set of reusable C++ components for building language runtimes
such as JIT compiler and garbage collector.

Java
source code

OpenJ9 Java
Bytecode
Compiler

OpenJ9 Java
Bytecode Interpreter

OMR
Diagnostic services

OMR
Just in Time
(JIT)
Compiler

OMR
Garbage
collector

OMR
Platform Abstraction Layer

Open J9
Diagnostic Glue

Open J9
JIT Compiler Glue

Open
J9
GC
Glue

Java Execution
Environment

2

Variability in Eclipse OMR

Languages
(Java, Python,
etc.)

Architectures
(x86, ARM,
Power, Z)

3

OMR’s current variability mechanism
in Compiler component

4

OMR’s variability mechanism
Static polymorphism/extensible classes

5

OMR’s variability mechanism
Static polymorphism/extensible classes

In case of OMR,
high runtime performance

is crucial!

6

Project Goal

Help OMR developers understand variability in their
code and investigate variability implementation

alternatives

7

2017-2018: Static polymorphism is a root of all problems

8

Static polymorphism

9

Static polymorphism

Too complex

2017-2018: Static polymorphism is a root of all problems

10

Static polymorphism

Too complex
We tried to switch to

dynamic polymorphism

2017-2018: Static polymorphism is a root of all problems

Dynamic polymorphism

11

SPLC 2018 CASCON 2017

Dynamic polymorphism

12

SPLC 2018 CASCON 2017

However, there are constraints and
requirements that dynamic polymorphism
cannot resolve.

In 2018-2019, We took a step back to get
a complete picture of all the current
challenges.

Icon made by Freepik from www.flaticon.com

Our Goal (2018-2020)

Identify current design challenges
and explore any design alternatives.

13

Steps

I. Identifying requirements
A. Example: C++ enum extensibility

II. Exploring solutions
A. Literature exploration
B. Industrial case studies

14

Step I: Identifying Requirements

Interviewed 6
developers

Identified
existing
challenges,
and
constraints

Synthesized
into
requirements

15

Prioritized the
requirements

Interview icon made by Becris from www.flaticon.com
Challenge icon made by Larea from www.thenounproject.com
Synthesis icon made by Deivid Sáenz from www.thenounproject.com
Priorities icon made by Phạm Thanh Lộc from www.thenounproject.com

http://www.flaticon.com
http://www.thenounproject.com
http://www.thenounproject.com
http://www.thenounproject.com

Challenges, constraints, and requirements

All requirements are listed here: https://youtu.be/F7FIE1QIUAE

16

Simplicity and
usability

Mechanism for
extending C++
enums/unions

Enable finer
control over
extension points

More
streamlined
consistency
checks

Varying
constructors
across
archs/langs

No strongly
connected
components
(e.g., templates)

https://youtu.be/F7FIE1QIUAE

Challenges, constraints, and requirements

All requirements are listed here: https://youtu.be/F7FIE1QIUAE

17

Simplicity and
usability

Mechanism for
extending C++
enums/unions

Enable finer
control over
extension points

More
streamlined
consistency
checks

Varying
constructors
across
archs/langs

No strongly
connected
components
(e.g., templates)

https://youtu.be/F7FIE1QIUAE

Example:
C++ Enum/Union Extensibility Problem

18

Requirements Example
C++ Enum/Union Extensibility Problem

 // enum values
 iconst, // load int const
 lconst, // load long const
 fconst, // load float const

 // Opcode A
 {
 /* .name = */ "iconst",
 /* .properties1 = */
ILProp1::LoadConst,
 /* other props ...*/
 },

 // Opcode B
 {
 /* .name = */ "lconst",
 ...
 },
// ...

Opcodes.hpp OpcodeProps.hpp

OpcodeEnum.hpp

enum ILOpCodes
{
 #include "il/Opcodes.hpp"
 extraOpcode1
 extraOpcode2
};

19

 // Opcode A
 {
 /* .name = */ "iconst",
 /* .properties1 = */
ILProp1::LoadConst,
 /* other props ...*/
 },

 // Opcode B
 {
 /* .name = */ "lconst",
 ...
 },
// ...

 // enum values
 iconst, // load int const
 lconst, // load long const
 fconst, // load float const

Requirements Example
C++ Enum/Union Extensibility Problem

Opcodes.hpp OpcodeProps.hpp

OpcodeEnum.hpp

enum ILOpCodes
{
 #include "il/Opcodes.hpp"
 extraOpcode1
 extraOpcode2
};

20

 // Opcode A
 {
 /* .name = */ "iconst",
 /* .properties1 = */
ILProp1::LoadConst,
 /* other props ...*/
 },

 // Opcode B
 {
 /* .name = */ "lconst",
 ...
 },
// ...

 // enum values
 iconst, // load int const
 lconst, // load long const
 fconst, // load float const

Requirements Example
C++ Enum/Union Extensibility Problem

Opcodes.hpp OpcodeProps.hpp

OpcodeEnum.hpp

enum ILOpCodes
{
 #include "il/Opcodes.hpp"
 extraOpcode1
 extraOpcode2
};

21

enum ILOpCodes
{
 iconst, // load int const
 lconst, // load long const
 fconst, // load float const
 extraOpcode1
 extraOpcode2
};

 // enum values
 iconst, // load int const
 lconst, // load long const
 fconst, // load float const

Requirements Example
C++ Enum/Union Extensibility Problem

Opcodes.hpp

enum ILOpCodes
{
 #include "il/Opcodes.hpp"
 extraOpcode1
 extraOpcode2
};

OpcodeEnum.hpp

OpcodeEnum.hpp after preprocessing

==

22

Requirements Example
C++ Enum/Union Extensibility Problem

// NOTE: IF you add opcodes or change the order then you must fix the
following
// files (at least): ./ILOpCodeProperties.hpp
// compiler/ras/Tree.cpp (2 tables)
// compiler/optimizer/SimplifierTable.hpp
// compiler/optimizer/ValuePropagationTable.hpp
// compiler/x/amd64/codegen/TreeEvaluatorTable.cpp
// compiler/x/i386/codegen/TreeEvaluatorTable.cpp
// compiler/p/codegen/TreeEvaluatorTable.cpp
// compiler/z/codegen/TreeEvaluatorTable.cpp
// compiler/aarch64/codegen/TreeEvaluatorTable.cpp
// compiler/arm/codegen/TreeEvaluatorTable.cpp
// compiler/il/OMRILOpCodesEnum.hpp
// compiler/il/ILOpCodes.hpp
// Also check tables in ../codegen/ILOps.hpp

OMRILOpCodesEnum.hpp

23

Requirements Example
C++ Enum/Union Extensibility Problem

// NOTE: IF you add opcodes or change the order then you must fix the
following
// files (at least): ./ILOpCodeProperties.hpp
// compiler/ras/Tree.cpp (2 tables)
// compiler/optimizer/SimplifierTable.hpp
// compiler/optimizer/ValuePropagationTable.hpp
// compiler/x/amd64/codegen/TreeEvaluatorTable.cpp
// compiler/x/i386/codegen/TreeEvaluatorTable.cpp
// compiler/p/codegen/TreeEvaluatorTable.cpp
// compiler/z/codegen/TreeEvaluatorTable.cpp
// compiler/aarch64/codegen/TreeEvaluatorTable.cpp
// compiler/arm/codegen/TreeEvaluatorTable.cpp
// compiler/il/OMRILOpCodesEnum.hpp
// compiler/il/ILOpCodes.hpp
// Also check tables in ../codegen/ILOps.hpp

OMRILOpCodesEnum.hpp

24

No C++ way of extending
unions/enums, which leads
to extending opcodes
confusing and more
error-prone.

Step II: Exploring solutions
Study existing mechanisms from
the software variability literature

25

Feature-
oriented
Programming

Parameters Design
patterns

Fine-grained Coarse-grained

+ Compile-time, load-time, and run-time

Exploring alternatives

26

Existing mechanisms: Parameters

27Reference: Sven Apel et al. 2013. Feature-Oriented Software Product Lines: Concepts and Implementation.
Springer Publishing Company, Incorporated.

Existing mechanisms: Parameters

● Easy to use and
understand

● Most languages
naturally support this
mechanism
(if statements)

● Creates code bloat

● Adds run-time
overhead

Pros Cons

28

Existing mechanisms: Parameters

● Easy to use and
understand

● Most languages
naturally support this
mechanism
(if statements)

● Creates code bloat

● Adds run-time
overhead

Pros Cons

✔ Simple and easy to understand

❌ Does not address all requirements (e.g., enum
extensions, need for varying constructors)

In OMR

29

Existing mechanisms: Design patterns

● Pre-planning is
necessary

● Boilerplate code

Pros Cons

● Well known patterns

● Disciplined
guidelines

30

Existing mechanisms: Design patterns

● Pre-planning is
necessary

● Boilerplate code

Pros Cons

● Well known patterns

● Disciplined
guidelines

In OMR

✔ Facilitates communication between developers

❌ Requires massive refactoring effort

❌ Does not address all requirements (e.g., enum
extensions)

31

Existing mechanisms: Feature-oriented Programming

32Reference: Sven Apel et al. 2013. Feature-Oriented Software Product Lines: Concepts and Implementation.
Springer Publishing Company, Incorporated.

Existing mechanisms: Feature-oriented Programming

33Reference: Sven Apel et al. 2013. Feature-Oriented Software Product Lines: Concepts and Implementation.
Springer Publishing Company, Incorporated.

Existing mechanisms: Feature-oriented Programming

34Reference: Sven Apel et al. 2013. Feature-Oriented Software Product Lines: Concepts and Implementation.
Springer Publishing Company, Incorporated.

Existing mechanisms: Feature-oriented Programming

35Reference: Sven Apel et al. 2013. Feature-Oriented Software Product Lines: Concepts and Implementation.
Springer Publishing Company, Incorporated.

Existing mechanisms: Feature-oriented Programming

● Only academic tools
so far

● Requires tool
support

Pros

● Good feature
traceability

● Separation of
concerns

Cons

36

Existing mechanisms: Feature-oriented Programming

● Only academic tools
so far

● Requires tool
support

Pros

● Good feature
traceability

● Separation of
concerns

Cons

In OMR

✔ Makes it simpler to track features

❌ Requires a complete rehaul

❌ Does not meet all requirements (e.g., enum extensions)
37

Industrial case studies

38

Industrial case studies

Most industry case studies focus on extracting a software product line from a
set of end products.

39

Software assets
Product A

Product B

Product C

Product derivation
process

Examples include MLPolyR [1] and Polyglot [2].

References:
1. W. Chae and M. Blume, "Building a Family of Compilers," SPLC ‘08, Limerick, 2008.
2. Polyglot Extensible Compiler Framework, https://github.com/polyglot-compiler/polyglot.

https://github.com/polyglot-compiler/polyglot

Industrial case studies

In OMR, we are trying to re-engineer an already existing highly-configurable
system.

40

Software assets

Product derivation
process

Build system (CMake) and
the C-preprocessor

Product A
Product B

Product C

OpenJ9, Ruby+OMR, SmallTalk,
etc.

JIT, GC,
pthread-like lib

41

Observation
Off-the-shelf mechanisms are not applicable for OMR.

Instead, tackle problems in an incremental manner.

42

Observation
Off-the-shelf mechanisms are not applicable for OMR.

Back to
C++ Enum/Union Extensibility Problem

43

Direction I:
Domain-specific
language (DSL)

C++ enum/union extensibility problem
Potential solutions

Direction II:
The C preprocessor

and macros

44

References:
- https://github.com/eclipse/omr/issues/4519
- https://github.com/eclipse/omr/pull/4915
- https://youtu.be/21yPv8GsvY4

https://github.com/eclipse/omr/issues/4519
https://github.com/eclipse/omr/pull/4915
https://youtu.be/21yPv8GsvY4

DSL Solution I: Custom DSL

45

.td file LLVM TableGen
.inc file

(C++ code)

Reference:
- https://llvm.org/docs/TableGen/
- https://www.aosabook.org/en/llvm.html

https://llvm.org/docs/TableGen/
https://www.aosabook.org/en/llvm.html

DSL Solution I: Custom DSL

46

● Requires tool
support (e.g.,
parser)

● OMR devs and
clients will have to
learn the DSL

● May add
unnecessary deps

Pros

● Makes code more
reusable

● Easier to track
information (e.g.,
opcode props)

Cons

DSL Solution II: Python + JSON

47

Python scripts
JSON files

hpp files
(C++ code)

DSL Solution II: Python + JSON

48

● Requires Python on
multiple platforms
as well as build
servers

● Clients will have to
have Python on
their platform

● May add
unnecessary deps

Pros

● No need to track
C++ headers
anymore

● Easier to
change/extend
opcodes and their
props

● JSON is easy to
understand and use

Cons

The C preprocessor (macro) based solution

#define FOR_EACH_OPCODE(MACRO)\
 // Opcode A

MACRO(“iconst”, 1) \

// Opcode B
MACRO(“fconst”, 2) \

...
#endif

49

The C preprocessor (macro) based solution

const char* names[] = {
#define GET_NAME(name, index) name,

FOR_EACH_OPCODE(GET_NAME)
#undef GET_NAME
};

#define FOR_EACH_OPCODE(MACRO)\
 // Opcode A

MACRO(“iconst”, 1) \

// Opcode B
MACRO(“fconst”, 2) \

...
#endif

50

The C preprocessor (macro) based solution

const char* names[] = {
#define GET_NAME(name, index) name,

FOR_EACH_OPCODE(GET_NAME)
#undef GET_NAME
};

#define FOR_EACH_OPCODE(MACRO)\
 // Opcode A

MACRO(“iconst”, 1) \

// Opcode B
MACRO(“fconst”, 2) \

...
#endif

51

The C preprocessor (macro) based solution

const char* names[] = {
#define GET_NAME(name, index) name,

FOR_EACH_OPCODE(GET_NAME)
#undef GET_NAME
};

#define FOR_EACH_OPCODE(MACRO)\
 // Opcode A

MACRO(“iconst”, 1) \

// Opcode B
MACRO(“fconst”, 2) \

...
#endif

const char* names[] = {
“iconst”,
“fconst”,

};

==

52

Current status of the solution

53

Current status of the solution

54
Icon made by Freepik from www.flaticon.com

Header file containing 735 opcodes,
each containing 14 properties.

Replace the old content of 12 header
files with a single macro in each.

Lessons learned

55

Understanding the
bigger picture

There is more constraints and
challenges we did not know

about

Practical considerations
There is no one-fits-all solution

Large rehauls require
expert knowledge

Deep knowledge of each piece of the
code base is sometimes required

Puzzle icon made by Freepik from www.flaticon.com
Practical icon from ClipDealer
Expertise Icon #318416

http://www.flaticon.com
https://us.clipdealer.com/vector/media/A:124180638?
https://icon-library.net/icon/expertise-icon-15.html

Acknowledgements
Special thanks go to:

● Xiaoli Liang

● Nazim Bhuiyan

● Daryl Maier

56

57

Summary

58

Summary

59

Summary

60

Summary

61

Summary

62

Summary

63

Summary

