-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_random.py
296 lines (252 loc) · 12.3 KB
/
train_random.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import sys
import json
import os
import os.path as osp
import argparse
from tqdm import tqdm
import time
import random
import numpy as np
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils import data
from engine import Engine
import networks
from datasets import build_dataset
from optimizer import build_optimizer, adjust_learning_rate
from loss.criterion import build_criterions
from utils.pyt_utils import load_model
from utils.logger import get_logger
import pruners
BACK_BONE = 'resnet50'
MODEL = 'deeplabv3'
BATCH_SIZE = 8
IGNORE_LABEL = 255
INPUT_SIZE = '769,769'
LEARNING_RATE = 1e-2
MOMENTUM = 0.9
BETAS = '0.9,0.999'
NUM_STEPS = 40000
POWER = 0.9
RANDOM_SEED = 12345
SAVE_NUM_IMAGES = 2
SAVE_PRED_EVERY = 10000
SAVE_STEPS = NUM_STEPS-5*SAVE_PRED_EVERY
SNAPSHOT_DIR = 'ckpt'
WEIGHT_DECAY = 0.0005
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_parser():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="DCFP")
parser.add_argument("--start-iters", type=int, default=0,
help="Number of classes to predict (including background).")
parser.add_argument("--resume", type=str, default=None)
parser.add_argument("--num-steps", type=int, default=NUM_STEPS,
help="Number of training steps.")
parser.add_argument("--random-seed", type=int, default=RANDOM_SEED,
help="Random seed to have reproducible results.")
parser.add_argument("--num-workers", type=int, default=4,
help="choose the number of workers.")
parser.add_argument("--ddp", type=str2bool, default='True')
# snapshot
parser.add_argument("--save-pred-every", type=int, default=SAVE_PRED_EVERY,
help="Save summaries and checkpoint every often.")
parser.add_argument("--save-steps", type=int, default=SAVE_STEPS,
help="Steps start to save checkpoint.")
parser.add_argument("--snapshot-dir", type=str, default=SNAPSHOT_DIR,
help="Where to save snapshots of the model.")
parser.add_argument("--save-log", action="store_true",
help="Where to save log file.")
# data
parser.add_argument("--batch-size", type=int, default=BATCH_SIZE,
help="Number of images sent to the network in one step.")
parser.add_argument("--dataset", type=str, default='CS',
help="choose dataset.")
parser.add_argument("--data-dir", type=str, default='train',
help="choose data type.")
parser.add_argument("--ignore-label", type=int, default=IGNORE_LABEL,
help="The index of the label to ignore during the training.")
parser.add_argument("--input-size", type=str, default=INPUT_SIZE,
help="Comma-separated string with height and width of images.")
parser.add_argument("--random-mirror", action="store_true",
help="Whether to randomly mirror the inputs during the training.")
parser.add_argument("--random-brightness", action="store_true",
help="Whether to randomly mirror the inputs during the training.")
parser.add_argument("--random-scale", action="store_true",
help="Whether to randomly scale the inputs during the training.")
parser.add_argument("--balance", type=int, default=0,
help="Whether to use the balanced dataset.")
parser.add_argument("--longsize", type=int, default=-1)
parser.add_argument("--shortsize", type=int, default=-1)
parser.add_argument("--data-para", type=str, default='{}')
# model
parser.add_argument("--model", type=str, default=MODEL,
help="choose model.")
parser.add_argument("--backbone", type=str, default=BACK_BONE,
help="backbone")
parser.add_argument("--backbone-para", type=str, default='{}')
parser.add_argument("--model-para", type=str, default='{}')
parser.add_argument("--align-corner", type=str2bool, default='True',
help="choose align corner.")
parser.add_argument("--no-decay", type=str, default=None,
help="no weight decay.")
# optim
parser.add_argument("--optim", type=str, default='sgd',
help="optimizer")
parser.add_argument("--learning-rate", type=float, default=LEARNING_RATE,
help="Base learning rate for training with polynomial decay.")
parser.add_argument("--weight-decay", type=float, default=WEIGHT_DECAY,
help="Regularisation parameter for L2-loss.")
parser.add_argument("--power", type=float, default=POWER,
help="Decay parameter to compute the learning rate.")
parser.add_argument("--momentum", type=float, default=MOMENTUM,
help="Momentum component of the optimiser.")
parser.add_argument("--betas", type=str, default=BETAS)
parser.add_argument("--warmup", type=int, default=-1)
# loss
parser.add_argument("--deepsup", type=str2bool, default='True',
help="use deepsup")
parser.add_argument("--loss-type", type=str, default='ce')
parser.add_argument("--loss-para", type=str, default='{}')
# prune
parser.add_argument("--prune-type", type=str, default=None)
parser.add_argument("--backbone-ratio", type=float, default=1.0)
parser.add_argument("--channel-cfg", type=str, default=None, help="path to channel_cfg.")
return parser
def main():
"""Create the model and start the training."""
parser = get_parser()
with Engine(custom_parser=parser) as engine:
args = parser.parse_args()
main_flag = (not engine.distributed) or (engine.distributed and engine.local_rank == 0)
if not os.path.exists(args.snapshot_dir):
if main_flag:
os.makedirs(args.snapshot_dir)
time.sleep(1)
if args.save_log:
logger = get_logger(log_file=os.path.join(args.snapshot_dir, 'log.txt'))
else:
logger = get_logger()
args.save_steps = min(args.save_steps, args.num_steps)
if main_flag:
logger.info('Running with config:\n{}'.format(
'\n'.join('{}:{}'.format(k,v) for k,v in vars(args).items())))
cudnn.benchmark = True
seed = args.random_seed
if engine.distributed:
seed = args.random_seed + engine.local_rank
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
# data loader
h, w = map(int, args.input_size.split(','))
input_size = (h, w)
data_para = json.loads(args.data_para)
dataset = build_dataset(args.dataset, split='train', data_dir=args.data_dir, crop_size=input_size,
scale=args.random_scale, mirror=args.random_mirror, brightness=args.random_brightness,
ignore_label=args.ignore_label, balance=args.balance,
longsize=args.longsize, shortsize=args.shortsize, data_para=data_para)
train_loader, train_sampler = engine.get_train_loader(dataset)
#criterion
loss_para = json.loads(args.loss_para)
criterion = build_criterions(args.loss_type, dataset, loss_para)
# model
backbone_para = json.loads(args.backbone_para)
model_para = json.loads(args.model_para)
seg_model = eval('networks.'+args.model+'.Seg_Model')(
backbone=args.backbone,
backbone_para=backbone_para,
model_para=model_para,
num_classes=dataset.num_classes,
align_corner=args.align_corner,
criterion = criterion,
deepsup=args.deepsup)
if args.channel_cfg is not None:
channel_cfg = torch.load(args.channel_cfg)
pruners.init_pruned_model(seg_model, channel_cfg)
if main_flag:
logger.info('prune from {}'.format(args.channel_cfg))
torch.save(channel_cfg, osp.join(args.snapshot_dir, 'channel_cfg.pth'))
if args.resume:
load_model(seg_model, args.resume)
if main_flag:
torch.save(seg_model.state_dict(), osp.join(args.snapshot_dir, 'resume_model.pth'))
logger.info('resume from {}'.format(args.resume))
optimizer = build_optimizer(args, seg_model)
optimizer.zero_grad()
if args.prune_type=='dcfp':
train_pruning = pruners.dcfp_pruning(seg_model,0.999)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
seg_model.to(device)
model = engine.data_parallel(seg_model)
model.train()
run = True
global_iteration = args.start_iters
num_epochs = args.num_steps // len(train_loader)
while run:
avgloss = 0
epoch = global_iteration // len(train_loader)
if engine.distributed:
train_sampler.set_epoch(epoch)
bar_format = '{desc}[{elapsed}<{remaining},{rate_fmt}]'
pbar = tqdm(range(len(train_loader)), file=sys.stdout,
bar_format=bar_format)
train_loader.dataset.pre_processing(epoch, num_epochs)
dataloader = iter(train_loader)
for idx in pbar:
global_iteration += 1
data = dataloader.next()
images, labels, img_meta = data["img"], data["label"], data["img_meta"]
if isinstance(images, dict):
for key in images:
images[key] = images[key].cuda(non_blocking=True)
else:
images = images.cuda(non_blocking=True)
if isinstance(labels, dict):
for key in labels:
labels[key] = labels[key].cuda(non_blocking=True)
else:
labels = labels.long().cuda(non_blocking=True)
optimizer.zero_grad()
lr = adjust_learning_rate(optimizer, args.learning_rate, global_iteration-1,
args.num_steps, args.power, args.warmup)
loss = model(images, labels, deepsup=args.deepsup)
assert loss['loss'] == loss['loss']
reduce_loss = engine.all_reduce_tensor(loss['loss'])
avgloss = avgloss+reduce_loss.item()
loss['loss'].backward()
if args.prune_type=='dcfp':
train_pruning.step(seg_model)
optimizer.step()
print_str = 'Epoch{}/Iters{}'.format(epoch, global_iteration) \
+ ' Iter{}/{}:'.format(idx + 1, len(train_loader)) \
+ ' lr=%.2e' % lr \
+ ' loss=%.2f' % reduce_loss.item()
pbar.set_description(print_str, refresh=False)
if main_flag:
if global_iteration>=args.save_steps:
if (args.num_steps-global_iteration) % args.save_pred_every == 0 or global_iteration >= args.num_steps:
logger.info('taking snapshot ...')
torch.save(seg_model.state_dict(),osp.join(args.snapshot_dir, args.dataset+'_scenes_'+str(global_iteration)+'.pth'))
if global_iteration >= args.num_steps:
run = False
if main_flag and args.prune_type=='dcfp':
train_pruning.export_eic(osp.join(args.snapshot_dir, 'score.pth'))
break
if main_flag:
avgloss = avgloss*1.0/len(train_loader)
logger.info('Epoch %d: avgloss=%.2f'%(epoch,avgloss))
if __name__ == '__main__':
main()