-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtotrt.py
137 lines (114 loc) · 4.34 KB
/
totrt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import argparse
import os
import json
import time
import numpy as np
import torch
import tensorrt as trt
from torch2trt import torch2trt, TRTModule
# from torch2trt_git import torch2trt
# from torch2trt_git.torch2trt import TRTModule
from tqdm import tqdm
# from torchstat import stat
import networks
import pruners
from utils.pyt_utils import load_model
torch.manual_seed(1989)
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_parser():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="tensorrt")
# test
parser.add_argument("--input-size", type=str, default='1024,2048',
help="Comma-separated string with height and width of images.")
# model
parser.add_argument("--model", type=str, default='None',
help="choose model.")
parser.add_argument("--backbone", type=str, default='None',
help="backbone")
parser.add_argument("--backbone-para", type=str, default='{}')
parser.add_argument("--model-para", type=str, default='{}')
parser.add_argument("--align-corner", type=str2bool, default='True',
help="choose align corner.")
parser.add_argument("--dataset", type=str, default='CS')
# ckpt
parser.add_argument("--restore-from", type=str, default=None,
help="Where restore model parameters from.")
parser.add_argument("--channel-cfg", type=str, default=None, help="path to channel_cfg.")
parser.add_argument("--save-dir", type=str, default=None)
return parser
def get_num_classes(dataset):
if dataset.startswith('CS'):
return 19
elif dataset.startswith('CTX'):
return 59
elif dataset.startswith('ADE'):
return 150
elif dataset.startswith('COCO'):
return 171
def benchmark(model, inputs, dtype='fp32', nwarmup=10, nruns=50):
model.eval()
if dtype == 'fp16':
inputs = inputs.half()
print("Warm up ...")
with torch.no_grad():
for _ in range(nwarmup):
outputs = model(inputs)
torch.cuda.synchronize()
print("Start timing ...")
timings = []
with torch.no_grad():
for i in tqdm(range(1, nruns + 1)):
start_time = time.time()
outputs = model(inputs)
torch.cuda.synchronize()
end_time = time.time()
timings.append(end_time - start_time)
print('Iteration %d/%d, avg batch time %.2f ms' % (i, nruns, np.mean(timings) * 1000))
if __name__ == '__main__':
parser = get_parser()
args = parser.parse_args()
print(os.path.join(args.save_dir, "trt.pth"))
# 1 get pytorch model
backbone_para = json.loads(args.backbone_para)
model_para = json.loads(args.model_para)
seg_model = eval('networks.' + args.model + '.Seg_Model')(
backbone=args.backbone,
backbone_para=backbone_para,
model_para=model_para,
num_classes=get_num_classes(args.dataset),
align_corner=args.align_corner)
if args.channel_cfg is not None:
channel_cfg = torch.load(args.channel_cfg)
pruners.init_pruned_model(seg_model, channel_cfg)
load_model(seg_model, args.restore_from)
seg_model = seg_model.eval().to('cuda')
# # 2 conver to tensorrt model
h, w = map(int, args.input_size.split(','))
arr = torch.ones(1, 3, h, w).cuda()
print('Convert start.')
model_trt = torch2trt(seg_model,
[arr],
fp16_mode=True,
log_level=trt.Logger.INFO,
max_workspace_size=(1 << 32),
max_batch_size=1,
)
torch.save(model_trt.state_dict(), os.path.join(args.save_dir, "trt.pth"))
print('Convert over.')
# 3 check speedup
h, w = map(int, args.input_size.split(','))
inputs = torch.randn((1, 3, h, w)).to('cuda')
# benchmark(seg_model, inputs, dtype='fp32')
model_trt_test = TRTModule()
model_trt_test.load_state_dict(torch.load(os.path.join(args.save_dir, "trt.pth")))
benchmark(model_trt, inputs, dtype='fp32')