-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprune.py
133 lines (112 loc) · 5.22 KB
/
prune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import argparse
import os
import json
import copy
import numpy as np
import torch
import torch.nn as nn
import networks
from utils.pyt_utils import load_model
from utils.flops_counter import get_model_complexity_info
from pruners.channel_pruner import init_pruned_model
from pruners.dcfp_pruner import DCFPPruner
from pruners.simi_pruner import SIMIPruner
from pruners.random_pruner import RandomChannelPruner
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_parser():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="DCFP")
parser.add_argument("--save-path", type=str, default='./ckpt')
parser.add_argument("--model-path", type=str, default='')
parser.add_argument("--score-path", type=str, default='')
parser.add_argument("--prune-ratio", type=float, default=0.6)
parser.add_argument("--start_global_percent", type=float, default=0.5)
parser.add_argument("--step_global_percent", type=float, default=0.02)
parser.add_argument("--model", type=str, default='')
parser.add_argument("--backbone", type=str, default='resnet50')
parser.add_argument("--backbone-para", type=str, default='{}')
# parser.add_argument("--backbone-para", type=str, default="{'os':8,'mg_unit':[1,2,4],'inplanes':128}")
parser.add_argument("--model-para", type=str, default='{}')
parser.add_argument("--align-corner", type=str2bool, default='True')
parser.add_argument("--dataset", type=str, default='CS')
return parser
def get_num_classes(dataset):
if dataset.startswith('CS'):
return 19
elif dataset.startswith('CTX'):
return 59
elif dataset.startswith('ADE'):
return 150
elif dataset.startswith('COCO'):
return 171
def main():
parser = get_parser()
args = parser.parse_args()
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
backbone_para = json.loads(args.backbone_para)
model_para = json.loads(args.model_para)
seg_model = eval('networks.' + args.model + '.Seg_Model')(
backbone=args.backbone,
backbone_para=backbone_para,
model_para=model_para,
num_classes=get_num_classes(args.dataset),
align_corner=args.align_corner,
criterion=None,
deepsup=False)
# flops, params = get_model_complexity_info(seg_model, (3, 512, 512), print_per_layer_stat=False)
flops, params = get_model_complexity_info(seg_model, (3,1024,2048), print_per_layer_stat=False)
flops = float(flops.split(' GFLOPs')[0])
seg_model = eval('networks.'+args.model+'.Seg_Model')(
backbone=args.backbone,
backbone_para=backbone_para,
model_para=model_para,
num_classes=get_num_classes(args.dataset),
align_corner=args.align_corner,
criterion=None,
deepsup=True)
load_model(seg_model, args.model_path)
global_percent = args.start_global_percent
while True:
seg_model_copy = copy.deepcopy(seg_model)
# pruner = SIMIPruner(global_percent=global_percent,layer_keep=0.02, score_file=args.score_path)
pruner = DCFPPruner(global_percent=global_percent,layer_keep=0.02, score_file=args.score_path)
# pruner = RandomChannelPruner(global_percent=global_percent, layer_keep=0.02)
sub_model, channel_cfg = pruner.prune_model(seg_model_copy, except_start_keys=['conv_deepsup'])
torch.save(sub_model.state_dict(), os.path.join(args.save_path, 'pruned.pth'))
torch.save(channel_cfg, os.path.join(args.save_path, 'channel_cfg.pth'))
seg_model2 = eval('networks.'+args.model+'.Seg_Model')(
backbone=args.backbone,
backbone_para=backbone_para,
model_para=model_para,
num_classes=get_num_classes(args.dataset),
align_corner=args.align_corner,
criterion=None,
deepsup=False)
channel_cfg = torch.load(os.path.join(args.save_path, 'channel_cfg.pth'))
init_pruned_model(seg_model2, channel_cfg)
load_model(seg_model2, os.path.join(args.save_path, 'pruned.pth'))
# flops2, params2 = get_model_complexity_info(seg_model2, (3,512,512),print_per_layer_stat=False)
flops2, params2 = get_model_complexity_info(seg_model2, (3,1024,2048),print_per_layer_stat=False)
flops2 = float(flops2.split(' GFLOPs')[0])
print('global_percent: {}, flops_ratio: {}'.format(global_percent, flops2/flops))
if flops2/flops<=(1-args.prune_ratio):
print('Finish!')
print('flops: {}, params: {}'.format(flops, params))
print('flops2: {}, params2: {}'.format(flops2, params2))
break
else:
global_percent = global_percent+args.step_global_percent
if global_percent>=1.0:
break
if __name__ == '__main__':
main()