-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_test.py
169 lines (142 loc) · 6.95 KB
/
evaluate_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import sys
sys.path.insert(1,'/data/pylib/')
import argparse
import numpy as np
import sys
import json
from tqdm import tqdm
import torch
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import networks
from datasets import build_dataset
import os
from math import ceil
from PIL import Image as PILImage
from utils.pyt_utils import load_model
from engine import Engine
from evaluate import predict_multiscale, generate_size_image, pad_inf
import pruners
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_parser():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="DCFP")
parser.add_argument("--dataset", type=str, default='CS',
help="choose dataset.")
parser.add_argument("--ignore-label", type=int, default=255,
help="The index of the label to ignore during the training.")
parser.add_argument("--batch-size", type=int, default=4,
help="Number of images sent to the network in one step.")
parser.add_argument("--restore-from", type=str, default='xx.pth',
help="Where restore model parameters from.")
parser.add_argument("--input-size", type=str, default='769,769',
help="Comma-separated string with height and width of images.")
parser.add_argument("--longsize", type=int, default=-1)
parser.add_argument("--shortsize", type=int, default=-1)
parser.add_argument("--num-workers", type=int, default=8,
help="choose the number of recurrence.")
parser.add_argument("--ddp", type=str2bool, default='True')
parser.add_argument("--align-corner", type=str2bool, default='True',
help="choose align corner.")
parser.add_argument("--whole", type=str2bool, default='False',
help="use whole input size.")
parser.add_argument("--flip", type=str2bool, default='False',
help="flip test.")
parser.add_argument("--ms", type=str, default='1',
help="multi scale")
parser.add_argument("--model", type=str, default='None',
help="choose model.")
parser.add_argument("--backbone", type=str, default='renet101',
help="backbone")
parser.add_argument("--backbone-para", type=str, default='{}')
parser.add_argument("--model-para", type=str, default='{}')
parser.add_argument("--channel-cfg", type=str, default=None, help="path to channel_cfg.")
return parser
def main():
"""Create the model and start the evaluation process."""
parser = get_parser()
with Engine(custom_parser=parser) as engine:
args = parser.parse_args()
cudnn.benchmark = True
h, w= map(int, args.input_size.split(','))
input_size = (h,w)
args.ms = [float(s) for s in args.ms.split(',')]
# args.ms = [0.5,0.75,1.0,1.25,1.5,1.75,2.0]
if (not engine.distributed) or (engine.distributed and engine.local_rank == 0):
print("Running with config:")
for k,v in vars(args).items():
print('{}: {}'.format(k,v))
dataset = build_dataset(args.dataset, split='test', data_dir='test')
test_loader, test_sampler = engine.get_test_loader(dataset)
if engine.distributed:
test_sampler.set_epoch(0)
backbone_para = json.loads(args.backbone_para)
model_para = json.loads(args.model_para)
seg_model = eval('networks.'+args.model+'.Seg_Model')(
backbone=args.backbone,
backbone_para=backbone_para,
model_para=model_para,
num_classes=dataset.num_classes,
align_corner=args.align_corner)
if args.channel_cfg is not None:
channel_cfg = torch.load(args.channel_cfg)
pruners.init_pruned_model(seg_model, channel_cfg)
load_model(seg_model, args.restore_from)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
seg_model.to(device)
model = engine.data_parallel(seg_model)
model.eval()
# palette = get_palette(256)
palette = list(dataset.cmap_labels.reshape(-1))
save_path = os.path.join(os.path.dirname(args.restore_from), 'outputs')
pred_id_path = os.path.join(save_path, 'test_id')
pred_path = os.path.join(save_path, 'test_pred')
for p in [save_path,pred_id_path,pred_path]:
if not os.path.exists(p):
if (not engine.distributed) or (engine.distributed and engine.local_rank == 0):
os.makedirs(p)
bar_format = '{desc}[{elapsed}<{remaining},{rate_fmt}]'
pbar = tqdm(range(len(test_loader)), file=sys.stdout,
bar_format=bar_format)
dataloader = iter(test_loader)
for idx in pbar:
with torch.no_grad():
data = dataloader.next()
image, img_meta = data["img"], data["img_meta"]
if args.longsize > 0:
image = generate_size_image(image, args.longsize, 'long')
elif args.shortsize > 0:
image = generate_size_image(image, args.shortsize, 'short')
size_scale = image.shape[2:]
if args.whole and args.align_corner:
image = pad_inf(image)
output = predict_multiscale(model, image, input_size, args.ms, dataset.num_classes, args.flip, args.align_corner, args.whole)
output = output[:,:,:size_scale[0],:size_scale[1]]
if args.longsize > 0 or args.shortsize > 0:
output = F.interpolate(output, size=(img_meta[0]["size"][0], img_meta[0]["size"][1]), mode='bilinear', align_corners=False)
output = output.numpy().transpose(0,2,3,1)
seg_pred = np.asarray(np.argmax(output, axis=3), dtype=np.uint8)
for i in range(image.size(0)):
#save id
output_id = PILImage.fromarray(dataset.id2trainId(seg_pred[i], reverse=True))
if output_id.mode != 'L':
output_id = output_id.convert('L')
output_id.save(os.path.join(pred_id_path, img_meta[i]["name"].split('_leftImg8bit')[0] + '.png'))
#save img
output_im = PILImage.fromarray(seg_pred[i])
output_im.putpalette(palette)
output_im.save(os.path.join(pred_path, img_meta[i]["name"]+'.png'))
print_str = ' Iter{}/{}'.format(idx + 1, len(test_loader))
pbar.set_description(print_str, refresh=False)
print('end')
if __name__ == '__main__':
main()