-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain-fix-rate.py
85 lines (72 loc) · 3.5 KB
/
train-fix-rate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import logging
import argparse
from lvae.trainer import BaseTrainingWrapper
from lvae.datasets.image import get_image_dateset
from lvae.evaluation import image_self_evaluate
def parse_args():
# ====== set the run settings ======
parser = argparse.ArgumentParser()
# wandb setting
parser.add_argument('--wbproject', type=str, default='default')
parser.add_argument('--wbentity', type=str, default=None)
parser.add_argument('--wbgroup', type=str, default='fix-rate-exp')
parser.add_argument('--wbtags', type=str, default=None, nargs='+')
parser.add_argument('--wbnote', type=str, default=None)
parser.add_argument('--wbmode', type=str, default='disabled')
parser.add_argument('--name', type=str, default=None)
# model setting
parser.add_argument('--model', type=str, default='qres34m')
parser.add_argument('--model_args', type=str, default='lmb=2048')
# resume setting
parser.add_argument('--resume', type=str, default=None)
parser.add_argument('--weights', type=str, default=None)
parser.add_argument('--load_optim', action=argparse.BooleanOptionalAction, default=False)
# data setting
parser.add_argument('--trainset', type=str, default='coco-train2017')
parser.add_argument('--transform', type=str, default='crop=256,hflip=True')
parser.add_argument('--valset', type=str, default='kodak')
# optimization setting
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--accum_num', type=int, default=1)
parser.add_argument('--optimizer', type=str, default='adam')
parser.add_argument('--lr', type=float,default=2e-4)
parser.add_argument('--lr_sched', type=str, default='constant')
parser.add_argument('--lrf_min', type=float,default=0.01)
parser.add_argument('--lr_warmup', type=int, default=0)
parser.add_argument('--grad_clip', type=float,default=2.0)
# training iterations setting
parser.add_argument('--iterations', type=int, default=800_000)
parser.add_argument('--eval_first', action=argparse.BooleanOptionalAction, default=False)
# exponential moving averaging (EMA)
parser.add_argument('--ema', action=argparse.BooleanOptionalAction, default=True)
parser.add_argument('--ema_decay', type=float,default=0.9999)
parser.add_argument('--ema_warmup', type=int, default=10_000)
# device setting
parser.add_argument('--fixseed', action=argparse.BooleanOptionalAction, default=True)
parser.add_argument('--workers', type=int, default=6)
cfg = parser.parse_args()
# default settings
cfg.wdecay = 0.0
cfg.amp = False
cfg.wandb_log_interval = 100
cfg.model_log_interval = 1000
cfg.model_val_interval = 1000
return cfg
class TrainWrapper(BaseTrainingWrapper):
def set_dataset(self):
cfg = self.cfg
logging.info('==== Datasets and Dataloaders ====')
trainset = get_image_dateset(cfg.trainset, transform_cfg=cfg.transform)
logging.info(f'Training root: {trainset.root}')
logging.info(f'Number of training images = {len(trainset)}')
logging.info(f'Training transform: \n{str(trainset.transform)}')
self.make_training_loader(trainset)
def eval_model(self, model) -> dict:
results = image_self_evaluate(model, dataset=self.cfg.valset, progress=False)
return results
def main():
cfg = parse_args()
trainer = TrainWrapper(cfg)
trainer.main()
if __name__ == '__main__':
main()