-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy patheval-fix-rate.py
59 lines (47 loc) · 1.87 KB
/
eval-fix-rate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from pathlib import Path
from collections import defaultdict, OrderedDict
import json
import argparse
import torch
from lvae.models.registry import get_model
from lvae.evaluation import imcoding_evaluate
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default='qres34m')
parser.add_argument('--lambdas', type=int, default=[16, 32, 64, 128, 256, 512, 1024, 2048], nargs='+')
parser.add_argument('--dataset', type=str, default='kodak')
parser.add_argument('--device', type=str, default='cuda:0')
args = parser.parse_args()
save_json_path = Path(f'runs/results/{args.dataset}-{args.model}.json')
if not save_json_path.parent.is_dir():
print(f'Creating {save_json_path.parent} ...')
save_json_path.parent.mkdir(parents=True)
all_lmb_results = defaultdict(list)
for lmb in args.lambdas:
# initialize model
model = get_model(args.model, lmb=lmb, pretrained=True)
print(f'Evaluating lmb={lmb} ...')
model.compress_mode()
model = model.to(device=torch.device(args.device))
model.eval()
# evaluate
results = imcoding_evaluate(model, args.dataset)
print('results:', results, '\n')
# accumulate results
for k,v in results.items():
all_lmb_results[k].append(v)
# save to json
json_data = OrderedDict()
json_data['name'] = args.model
json_data['lambdas'] = args.lambdas
json_data['test-set'] = args.dataset
json_data['results'] = all_lmb_results
with open(save_json_path, 'w') as f:
json.dump(json_data, fp=f, indent=4)
print(f'Saved results to {save_json_path} \n')
# final print
for k, vlist in all_lmb_results.items():
vlist_str = ', '.join([f'{v:.12f}'[:8] for v in vlist])
print(f'{k:<6s} = [{vlist_str}]')
if __name__ == '__main__':
main()