-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmnist_hand.py
205 lines (165 loc) · 5.81 KB
/
mnist_hand.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import random
import numpy as np
from Fei_dataset import *
from six.moves import xrange
from scipy.misc import imsave as ims
from HSICSupport import *
from ops import *
from Utlis2 import *
import gzip
import cv2
import keras as keras
def Split_dataset_by5(x,y):
arr1 = []
arr2 = []
arr3 = []
arr4 = []
arr5 = []
labelArr1 = []
labelArr2 = []
labelArr3 = []
labelArr4 = []
labelArr5 = []
n = np.shape(x)[0]
for i in range(n):
data1 = x[i]
label1 = y[i]
if label1[0] == 1 or label1[1] == 1:
arr1.append(data1)
labelArr1.append(label1)
if label1[2] == 1 or label1[3] == 1:
arr2.append(data1)
labelArr2.append(label1)
if label1[4] == 1 or label1[5] == 1:
arr3.append(data1)
labelArr3.append(label1)
if label1[6] == 1 or label1[7] == 1:
arr4.append(data1)
labelArr4.append(label1)
if label1[8] == 1 or label1[9] == 1:
arr5.append(data1)
labelArr5.append(label1)
arr1 = np.array(arr1)
arr2 = np.array(arr2)
arr3 = np.array(arr3)
arr4 = np.array(arr4)
arr5 = np.array(arr5)
labelArr1 = np.array(labelArr1)
labelArr2 = np.array(labelArr2)
labelArr3 = np.array(labelArr3)
labelArr4 = np.array(labelArr4)
labelArr5 = np.array(labelArr5)
return arr1,labelArr1,arr2,labelArr2,arr3,labelArr3,arr4,labelArr4,arr5,labelArr5
def load_mnist(dataset_name):
data_dir = os.path.join("./data", dataset_name)
def extract_data(filename, num_data, head_size, data_size):
with gzip.open(filename) as bytestream:
bytestream.read(head_size)
buf = bytestream.read(data_size * num_data)
data = np.frombuffer(buf, dtype=np.uint8).astype(np.float)
return data
data = extract_data(data_dir + '/train-images-idx3-ubyte.gz', 60000, 16, 28 * 28)
trX = data.reshape((60000, 28, 28, 1))
data = extract_data(data_dir + '/train-labels-idx1-ubyte.gz', 60000, 8, 1)
trY = data.reshape((60000))
data = extract_data(data_dir + '/t10k-images-idx3-ubyte.gz', 10000, 16, 28 * 28)
teX = data.reshape((10000, 28, 28, 1))
data = extract_data(data_dir + '/t10k-labels-idx1-ubyte.gz', 10000, 8, 1)
teY = data.reshape((10000))
trY = np.asarray(trY)
teY = np.asarray(teY)
X = np.concatenate((trX, teX), axis=0)
y = np.concatenate((trY, teY), axis=0).astype(np.int)
seed = 547
np.random.seed(seed)
np.random.shuffle(X)
np.random.seed(seed)
np.random.shuffle(y)
y_vec = np.zeros((len(y), 10), dtype=np.float)
for i, label in enumerate(y):
y_vec[i, y[i]] = 1.0
return X / 255., y_vec
def GiveMNIST_SVHN():
mnistName = "mnist"
data_X, data_y = load_mnist(mnistName)
#data_X = np.expand_dims(data_X, axis=3)
data_X = np.concatenate((data_X, data_X, data_X), axis=-1)
size = (int(32), int(32))
myArr = []
for i in range(np.shape(data_X)[0]):
image = cv2.resize(data_X[i],size, interpolation=cv2.INTER_AREA)
myArr.append(image)
data_X = np.array(myArr)
x_train = data_X[0:60000]
x_test = data_X[60000:70000]
y_train = data_y[0:60000]
y_test = data_y[60000:70000]
mnist_train_x = x_train
mnist_train_label = y_train
mnist_test = x_test
mnist_label_test = y_test
myTest = mnist_train_x[0:64]
ims("results/" + "gggg" + str(0) + ".jpg", merge2(myTest[:64], [8, 8]))
x_train, y_train, x_test, y_test = GetSVHN_DataSet()
y_train = keras.utils.to_categorical(y_train)
y_test = keras.utils.to_categorical(y_test)
return mnist_train_x,mnist_train_label,mnist_test,mnist_label_test,x_train,y_train,x_test,y_test
def Split_dataset(x,y,n_label):
y = np.argmax(y,axis=1)
n_each = n_label / 10
isRun = True
x_train = []
y_train = []
index = np.zeros(10)
while(isRun):
a = random.randint(0, np.shape(x)[0])-1
x1 = x[a]
y1 = y[a]
if index[y1] < n_each:
x_train.append(x1)
y_train.append(y1)
index[y1] = index[y1]+1
isOk1 = True
for i in range(10):
if index[i] < n_each:
isOk1 = False
if isOk1:
break
x_train = np.array(x_train)
y_train = np.array(y_train)
return x_train,y_train
def Give_InverseFashion():
mnistName = "Fashion"
data_X, data_y = load_mnist(mnistName)
data_X = np.reshape(data_X,(-1,28,28))
for i in range(np.shape(data_X)[0]):
for k1 in range(28):
for k2 in range(28):
data_X[i,k1,k2] = 1.0 - data_X[i,k1,k2]
data_X = np.reshape(data_X,(-1,28,28,1))
return data_X,data_y
def Give_InverseMNIST32():
mnistName = "mnist"
data_X, data_y = load_mnist(mnistName)
data_X = np.reshape(data_X, (-1, 28, 28))
for i in range(np.shape(data_X)[0]):
for k1 in range(28):
for k2 in range(28):
data_X[i, k1, k2] = 1.0 - data_X[i, k1, k2]
data_X = np.reshape(data_X, (-1, 28, 28, 1))
data_X = np.concatenate((data_X, data_X, data_X), axis=-1)
size = (int(32), int(32))
myArr = []
for i in range(np.shape(data_X)[0]):
image = cv2.resize(data_X[i], size, interpolation=cv2.INTER_AREA)
myArr.append(image)
data_X = np.array(myArr)
x_train = data_X[0:60000]
x_test = data_X[60000:70000]
y_train = data_y[0:60000]
y_test = data_y[60000:70000]
mnist_train_x = x_train
mnist_train_label = y_train
mnist_test = x_test
mnist_label_test = y_test
return mnist_train_x,mnist_train_label,mnist_test,mnist_label_test