From dd0e8dda3d3b26308f90cd5915655f35d6e713e5 Mon Sep 17 00:00:00 2001 From: John Halley Gotway Date: Thu, 23 Feb 2023 16:24:56 -0700 Subject: [PATCH] Per #2449, for math equations, all underscores inside text elements must be escaped using a \ character. Re-enable PDF generation for this branch. --- .readthedocs.yaml | 2 +- docs/Users_Guide/appendixC.rst | 20 ++++++++++---------- 2 files changed, 11 insertions(+), 11 deletions(-) diff --git a/.readthedocs.yaml b/.readthedocs.yaml index 63bbf83b7a..b08da35999 100644 --- a/.readthedocs.yaml +++ b/.readthedocs.yaml @@ -7,7 +7,7 @@ version: 2 # Build all formats (htmlzip, pdf, epub) #formats: all -#formats: [pdf] +formats: [pdf] # Optionally set the version of Python and requirements required to build your # docs diff --git a/docs/Users_Guide/appendixC.rst b/docs/Users_Guide/appendixC.rst index 6a385f7bfe..8dd6981f53 100644 --- a/docs/Users_Guide/appendixC.rst +++ b/docs/Users_Guide/appendixC.rst @@ -154,7 +154,7 @@ H_RATE is defined as .. only:: html - .. math:: \text{H_RATE } = \frac{n_{11}}{T}. + .. math:: \text{H\_RATE } = \frac{n_{11}}{T}. H_RATE is equivalent to the H value computed by the NCEP verification system. H_RATE ranges from 0 to 1; a perfect forecast would have H_RATE = 1. @@ -635,7 +635,7 @@ The centered anomaly correlation coefficient (ANOM_CORR) which includes the mean .. only:: html - .. math:: \text{ANOM_CORR } = \frac{ \overline{[(f - c) - \overline{(f - c)}][(a - c) - \overline{(a - c)}]}}{ \sqrt{ \overline{( (f - c) - \overline{(f - c)})^2} \overline{( (a - c) - \overline{(a - c)})^2}}} + .. math:: \text{ANOM\_CORR } = \frac{ \overline{[(f - c) - \overline{(f - c)}][(a - c) - \overline{(a - c)}]}}{ \sqrt{ \overline{( (f - c) - \overline{(f - c)})^2} \overline{( (a - c) - \overline{(a - c)})^2}}} The uncentered anomaly correlation coefficient (ANOM_CORR_UNCNTR) which does not include the mean errors is defined as: @@ -774,9 +774,9 @@ where the weights are applied at each grid location, with values assigned accord .. only:: html .. math:: - \text{S1_OG} = \frac{\text{EGBAR}}{\text{OGBAR}} + \text{S1\_OG} = \frac{\text{EGBAR}}{\text{OGBAR}} - \text{FGOG_RATIO} = \frac{\text{FGBAR}}{\text{OGBAR}} + \text{FGOG\_RATIO} = \frac{\text{FGBAR}}{\text{OGBAR}} MET verification measures for probabilistic forecasts @@ -989,7 +989,7 @@ Let :math:`\text{J}` be the number of categories, then both the forecast, :math: :math:`F_m = \sum_{j=1}^m (f_j)` and :math:`O_m = \sum_{j=1}^m (o_j), m = 1,…,J`. -To clarify, :math:`F_1 = f_1` is the first component of :math:`F_m`, :math:`F_2 = f_1+f_2`, etc., and :math:`F_J = 1`. Similarly, if :math:`o_j = 1` and :math:`i < j`, then :math:`O_i = 0` and when :math:`i≥j`, :math:`O_i = 1`, and of course, :math:`O_J = 1`. Finally, the RPS is defined to be: +To clarify, :math:`F_1 = f_1` is the first component of :math:`F_m`, :math:`F_2 = f_1+f_2`, etc., and :math:`F_J = 1`. Similarly, if :math:`o_j = 1` and :math:`i < j`, then :math:`O_i = 0` and when :math:`i >= j`, :math:`O_i = 1`, and of course, :math:`O_J = 1`. Finally, the RPS is defined to be: .. math:: \text{RPS} = \sum_{m=1}^J (F_m - O_m)^2 = \sum_{m=1}^J BS_m, @@ -1018,11 +1018,11 @@ The score can be interpreted as a continuous version of the mean absolute error To calculate crps_emp_fair (bias adjusted, empirical ensemble CRPS) for each individual observation with m ensemble members: -.. math:: \text{crps_emp_fair}_i = \text{crps_emp}_i - \frac{1}{2*m} * \frac{1}{m*(m-1)} \sum_{i \ne j}|f_{i} - f_{j}| +.. math:: \text{crps\_emp\_fair}_i = \text{crps\_emp}_i - \frac{1}{2*m} * \frac{1}{m*(m-1)} \sum_{i \neq j}|f_{i} - f_{j}| The overall CRPS_EMP_FAIR is calculated as the average of the individual measures. In equation form: -.. math:: \text{CRPS_EMP_FAIR} = \text{average(crps_emp_fair) } = \frac{1}{N} \sum_{i=1}^N \text{crps_emp_fair}_i +.. math:: \text{CRPS\_EMP\_FAIR} = \text{average(crps\_emp\_fair) } = \frac{1}{N} \sum_{i=1}^N \text{crps\_emp\_fair}_i Ensemble Mean Absolute Difference --------------------------------- @@ -1031,11 +1031,11 @@ Called "SPREAD_MD" in ECNT output :numref:`table_ES_header_info_es_out_ECNT` The ensemble mean absolute difference is an alternative measure of ensemble spread. It is computed for each individual observation (denoted by a lowercase spread_md) with m ensemble members: -.. math:: \text{spread_md}_i = \frac{1}{m*(m-1)} \sum_{i \ne j}|f_{i} - f_{j}| +.. math:: \text{spread\_md}_i = \frac{1}{m*(m-1)} \sum_{i \neq j}|f_{i} - f_{j}| The overall SPREAD_MD is calculated as the average of the individual measures. In equation form: -.. math:: \text{SPREAD_MD} = \text{average(spread_md) } = \frac{1}{N} \sum_{i=1}^N \text{spread_md}_i +.. math:: \text{SPREAD\_MD} = \text{average(spread\_md) } = \frac{1}{N} \sum_{i=1}^N \text{spread\_md}_i A perfect forecast would have ensemble mean absolute difference = 0. @@ -1057,7 +1057,7 @@ Called "BIAS_RATIO" in ECNT output :numref:`table_ES_header_info_es_out_ECNT` The bias ratio (BIAS_RATIO) is computed when verifying an ensemble against gridded analyses or point observations. It is defined as the mean error (ME) of ensemble member values greater than or equal to the observation value to which they are matched divided by the absolute value of the mean error (ME) of ensemble member values less than the observation values. -.. math:: \text{BIAS_RATIO} = \frac{ \text{ME}_{f >= o} }{ |\text{ME}_{f < o}| } +.. math:: \text{BIAS\_RATIO} = \frac{ \text{ME}_{f >= o} }{ |\text{ME}_{f < o}| } A perfect forecast has ME = 0. Since BIAS_RATIO is computed as the high bias (ME_GE_OBS) divide by the absolute value of the low bias (ME_LT_OBS), a perfect forecast has BIAS_RATIO = 0/0, which is undefined. In practice, the high and low bias values are unlikely to be 0.