-
Notifications
You must be signed in to change notification settings - Fork 166
/
Copy pathdistributions.py
665 lines (543 loc) · 16.7 KB
/
distributions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
"""
Distributions
"""
from functools import wraps
from abc import ABCMeta
from abc import abstractmethod
import scipy as sp
import numpy as np
from pygam.core import Core
from pygam.utils import ylogydu
def multiply_weights(deviance):
@wraps(deviance)
def multiplied(self, y, mu, weights=None, **kwargs):
if weights is None:
weights = np.ones_like(mu)
return deviance(self, y, mu, **kwargs) * weights
return multiplied
def divide_weights(V):
@wraps(V)
def divided(self, mu, weights=None, **kwargs):
if weights is None:
weights = np.ones_like(mu)
return V(self, mu, **kwargs) / weights
return divided
class Distribution(Core):
__metaclass__ = ABCMeta
"""
base distribution class
"""
def __init__(self, name=None, scale=None):
"""
creates an instance of the Distribution class
Parameters
----------
name : str, default: None
scale : float or None, default: None
scale/standard deviation of the distribution
Returns
-------
self
"""
self.scale = scale
self._known_scale = self.scale is not None
super(Distribution, self).__init__(name=name)
if not self._known_scale:
self._exclude += ['scale']
def phi(self, y, mu, edof, weights):
"""
GLM scale parameter.
for Binomial and Poisson families this is unity
for Normal family this is variance
Parameters
----------
y : array-like of length n
target values
mu : array-like of length n
expected values
edof : float
estimated degrees of freedom
weights : array-like shape (n,) or None, default: None
sample weights
if None, defaults to array of ones
Returns
-------
scale : estimated model scale
"""
if self._known_scale:
return self.scale
else:
return np.sum(weights * self.V(mu) ** -1 * (y - mu) ** 2) / (len(mu) - edof)
@abstractmethod
def sample(self, mu):
"""
Return random samples from this distribution.
Parameters
----------
mu : array-like of shape n_samples or shape (n_simulations, n_samples)
expected values
Returns
-------
random_samples : np.array of same shape as mu
"""
pass
class NormalDist(Distribution):
"""
Normal Distribution
"""
def __init__(self, scale=None):
"""
creates an instance of the NormalDist class
Parameters
----------
scale : float or None, default: None
scale/standard deviation of the distribution
Returns
-------
self
"""
super(NormalDist, self).__init__(name='normal', scale=scale)
def log_pdf(self, y, mu, weights=None):
"""
computes the log of the pdf or pmf of the values under the current distribution
Parameters
----------
y : array-like of length n
target values
mu : array-like of length n
expected values
weights : array-like shape (n,) or None, default: None
sample weights
if None, defaults to array of ones
Returns
-------
pdf/pmf : np.array of length n
"""
if weights is None:
weights = np.ones_like(mu)
scale = self.scale / weights
return sp.stats.norm.logpdf(y, loc=mu, scale=scale)
@divide_weights
def V(self, mu):
"""
glm Variance function.
if
Y ~ ExpFam(theta, scale=phi)
such that
E[Y] = mu = b'(theta)
and
Var[Y] = b''(theta) * phi / w
then we seek V(mu) such that we can represent Var[y] as a fn of mu:
Var[Y] = V(mu) * phi
ie
V(mu) = b''(theta) / w
Parameters
----------
mu : array-like of length n
expected values
Returns
-------
V(mu) : np.array of length n
"""
return np.ones_like(mu)
@multiply_weights
def deviance(self, y, mu, scaled=True):
"""
model deviance
for a gaussian linear model, this is equal to the SSE
Parameters
----------
y : array-like of length n
target values
mu : array-like of length n
expected values
scaled : boolean, default: True
whether to divide the deviance by the distribution scaled
Returns
-------
deviances : np.array of length n
"""
dev = (y - mu) ** 2
if scaled:
dev /= self.scale
return dev
def sample(self, mu):
"""
Return random samples from this Normal distribution.
Samples are drawn independently from univariate normal distributions
with means given by the values in `mu` and with standard deviations
equal to the `scale` attribute if it exists otherwise 1.0.
Parameters
----------
mu : array-like of shape n_samples or shape (n_simulations, n_samples)
expected values
Returns
-------
random_samples : np.array of same shape as mu
"""
standard_deviation = self.scale**0.5 if self.scale else 1.0
return np.random.normal(loc=mu, scale=standard_deviation, size=None)
class BinomialDist(Distribution):
"""
Binomial Distribution
"""
def __init__(self, levels=1):
"""
creates an instance of the Binomial class
Parameters
----------
levels : int of None, default: 1
number of trials in the binomial distribution
Returns
-------
self
"""
if levels is None:
levels = 1
self.levels = levels
super(BinomialDist, self).__init__(name='binomial', scale=1.0)
self._exclude.append('scale')
def log_pdf(self, y, mu, weights=None):
"""
computes the log of the pdf or pmf of the values under the current distribution
Parameters
----------
y : array-like of length n
target values
mu : array-like of length n
expected values
weights : array-like shape (n,) or None, default: None
sample weights
if None, defaults to array of ones
Returns
-------
pdf/pmf : np.array of length n
"""
if weights is None:
weights = np.ones_like(mu)
n = self.levels
p = mu / self.levels
return sp.stats.binom.logpmf(y, n, p)
@divide_weights
def V(self, mu):
"""
glm Variance function
computes the variance of the distribution
Parameters
----------
mu : array-like of length n
expected values
Returns
-------
variance : np.array of length n
"""
return mu * (1 - mu / self.levels)
@multiply_weights
def deviance(self, y, mu, scaled=True):
"""
model deviance
for a bernoulli logistic model, this is equal to the twice the
negative loglikelihod.
Parameters
----------
y : array-like of length n
target values
mu : array-like of length n
expected values
scaled : boolean, default: True
whether to divide the deviance by the distribution scaled
Returns
-------
deviances : np.array of length n
"""
dev = 2 * (ylogydu(y, mu) + ylogydu(self.levels - y, self.levels - mu))
if scaled:
dev /= self.scale
return dev
def sample(self, mu):
"""
Return random samples from this Normal distribution.
Parameters
----------
mu : array-like of shape n_samples or shape (n_simulations, n_samples)
expected values
Returns
-------
random_samples : np.array of same shape as mu
"""
number_of_trials = self.levels
success_probability = mu / number_of_trials
return np.random.binomial(n=number_of_trials, p=success_probability, size=None)
class PoissonDist(Distribution):
"""
Poisson Distribution
"""
def __init__(self):
"""
creates an instance of the PoissonDist class
Parameters
----------
None
Returns
-------
self
"""
super(PoissonDist, self).__init__(name='poisson', scale=1.0)
self._exclude.append('scale')
def log_pdf(self, y, mu, weights=None):
"""
computes the log of the pdf or pmf of the values under the current distribution
Parameters
----------
y : array-like of length n
target values
mu : array-like of length n
expected values
weights : array-like shape (n,) or None, default: None
containing sample weights
if None, defaults to array of ones
Returns
-------
pdf/pmf : np.array of length n
"""
if weights is None:
weights = np.ones_like(mu)
# in Poisson regression weights are proportional to the exposure
# so we want to pump up all our predictions
# NOTE: we assume the targets are counts, not rate.
# ie if observations were scaled to account for exposure, they have
# been rescaled before calling this function.
# since some samples have higher exposure,
# they also need to have higher variance,
# we do this by multiplying mu by the weight=exposure
mu = mu * weights
return sp.stats.poisson.logpmf(y, mu=mu)
@divide_weights
def V(self, mu):
"""
glm Variance function
computes the variance of the distribution
Parameters
----------
mu : array-like of length n
expected values
Returns
-------
variance : np.array of length n
"""
return mu
@multiply_weights
def deviance(self, y, mu, scaled=True):
"""
model deviance
for a bernoulli logistic model, this is equal to the twice the
negative loglikelihod.
Parameters
----------
y : array-like of length n
target values
mu : array-like of length n
expected values
scaled : boolean, default: True
whether to divide the deviance by the distribution scaled
Returns
-------
deviances : np.array of length n
"""
dev = 2 * (ylogydu(y, mu) - (y - mu))
if scaled:
dev /= self.scale
return dev
def sample(self, mu):
"""
Return random samples from this Poisson distribution.
Parameters
----------
mu : array-like of shape n_samples or shape (n_simulations, n_samples)
expected values
Returns
-------
random_samples : np.array of same shape as mu
"""
return np.random.poisson(lam=mu, size=None)
class GammaDist(Distribution):
"""
Gamma Distribution
"""
def __init__(self, scale=None):
"""
creates an instance of the GammaDist class
Parameters
----------
scale : float or None, default: None
scale/standard deviation of the distribution
Returns
-------
self
"""
super(GammaDist, self).__init__(name='gamma', scale=scale)
def log_pdf(self, y, mu, weights=None):
"""
computes the log of the pdf or pmf of the values under the current distribution
Parameters
----------
y : array-like of length n
target values
mu : array-like of length n
expected values
weights : array-like shape (n,) or None, default: None
containing sample weights
if None, defaults to array of ones
Returns
-------
pdf/pmf : np.array of length n
"""
if weights is None:
weights = np.ones_like(mu)
nu = weights / self.scale
return sp.stats.gamma.logpdf(x=y, a=nu, scale=mu / nu)
@divide_weights
def V(self, mu):
"""
glm Variance function
computes the variance of the distribution
Parameters
----------
mu : array-like of length n
expected values
Returns
-------
variance : np.array of length n
"""
return mu**2
@multiply_weights
def deviance(self, y, mu, scaled=True):
"""
model deviance
for a bernoulli logistic model, this is equal to the twice the
negative loglikelihod.
Parameters
----------
y : array-like of length n
target values
mu : array-like of length n
expected values
scaled : boolean, default: True
whether to divide the deviance by the distribution scaled
Returns
-------
deviances : np.array of length n
"""
dev = 2 * ((y - mu) / mu - np.log(y / mu))
if scaled:
dev /= self.scale
return dev
def sample(self, mu):
"""
Return random samples from this Gamma distribution.
Parameters
----------
mu : array-like of shape n_samples or shape (n_simulations, n_samples)
expected values
Returns
-------
random_samples : np.array of same shape as mu
"""
# in numpy.random.gamma, `shape` is the parameter sometimes denoted by
# `k` that corresponds to `nu` in S. Wood (2006) Table 2.1
shape = 1.0 / self.scale
# in numpy.random.gamma, `scale` is the parameter sometimes denoted by
# `theta` that corresponds to mu / nu in S. Wood (2006) Table 2.1
scale = mu / shape
return np.random.gamma(shape=shape, scale=scale, size=None)
class InvGaussDist(Distribution):
"""
Inverse Gaussian (Wald) Distribution
"""
def __init__(self, scale=None):
"""
creates an instance of the InvGaussDist class
Parameters
----------
scale : float or None, default: None
scale/standard deviation of the distribution
Returns
-------
self
"""
super(InvGaussDist, self).__init__(name='inv_gauss', scale=scale)
def log_pdf(self, y, mu, weights=None):
"""
computes the log of the pdf or pmf of the values under the current distribution
Parameters
----------
y : array-like of length n
target values
mu : array-like of length n
expected values
weights : array-like shape (n,) or None, default: None
containing sample weights
if None, defaults to array of ones
Returns
-------
pdf/pmf : np.array of length n
"""
if weights is None:
weights = np.ones_like(mu)
gamma = weights / self.scale
return sp.stats.invgauss.logpdf(y, mu, scale=1.0 / gamma)
@divide_weights
def V(self, mu):
"""
glm Variance function
computes the variance of the distribution
Parameters
----------
mu : array-like of length n
expected values
Returns
-------
variance : np.array of length n
"""
return mu**3
@multiply_weights
def deviance(self, y, mu, scaled=True):
"""
model deviance
for a bernoulli logistic model, this is equal to the twice the
negative loglikelihod.
Parameters
----------
y : array-like of length n
target values
mu : array-like of length n
expected values
scaled : boolean, default: True
whether to divide the deviance by the distribution scaled
Returns
-------
deviances : np.array of length n
"""
dev = ((y - mu) ** 2) / (mu**2 * y)
if scaled:
dev /= self.scale
return dev
def sample(self, mu):
"""
Return random samples from this Inverse Gaussian (Wald) distribution.
Parameters
----------
mu : array-like of shape n_samples or shape (n_simulations, n_samples)
expected values
Returns
-------
random_samples : np.array of same shape as mu
"""
return np.random.wald(mean=mu, scale=self.scale, size=None)
DISTRIBUTIONS = {
'normal': NormalDist,
'poisson': PoissonDist,
'binomial': BinomialDist,
'gamma': GammaDist,
'inv_gauss': InvGaussDist,
}