-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
204 lines (165 loc) · 7.96 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
from model.question_answer_model import QACNNnet
import config
import tensorflow as tf
from tensorflow.keras import mixed_precision
import numpy as np
from preprocessing.dataframe_builder import load_dataframe, build_embedding_matrix
from model.generator import Generator
import string
def load_data():
'''
Method responsible for loading the dataset, and returning it split as train
and validation sets
'''
dataframe, words_tokenizer, chars_tokenizer, glove_dict = load_dataframe(force_rebuild=False)
pretrained_embedding_weights = build_embedding_matrix(words_tokenizer, glove_dict)
words_to_remove = ['a', 'an', 'the'] + list(string.punctuation)
tokens_to_remove = []
for w in words_to_remove:
if w in words_tokenizer:
tokens_to_remove.append(words_tokenizer[w])
tokens_to_remove.append(0) # Padding
tokens_to_remove = tf.constant(tokens_to_remove)
tokens_to_remove = tf.expand_dims(tokens_to_remove, -1)
train_set = dataframe.loc[dataframe["Split"] == "train"]
validation_set = dataframe.loc[dataframe["Split"] == "validation"]
input_train = (np.stack(train_set["Context words"], axis=0),
np.stack(train_set["Context chars"], axis=0),
np.stack(train_set["Question words"], axis=0),
np.stack(train_set["Question chars"], axis=0))
output_train = np.stack(train_set["Labels"], axis=0)
input_validation = (np.stack(validation_set["Context words"], axis=0),
np.stack(validation_set["Context chars"], axis=0),
np.stack(validation_set["Question words"], axis=0),
np.stack(validation_set["Question chars"], axis=0))
output_validation = np.stack(validation_set["Labels"], axis=0)
config.config_model(len(words_tokenizer),
len(chars_tokenizer),
pretrained_embedding_weights,
tokens_to_remove)
return input_train, input_validation, output_train, output_validation
# Build model and compile
def build_model(input_embedding_params, embedding_encoder_params, conv_input_projection_params,
model_encoder_params, context_query_attention_params, output_params, max_context_words,
max_query_words, max_chars, optimizer, vocab_size, ignore_tokens, dropout_rate):
'''
Build and compile the model by using all the configuration parameters and dictionaries
received as argument.
'''
# Model input tensors
context_words_input = tf.keras.Input(shape=(max_context_words), name="context words")
context_characters_input = tf.keras.Input(shape=(max_context_words, max_chars), name="context characters")
query_words_input = tf.keras.Input(shape=(max_query_words), name="query words")
query_characters_input = tf.keras.Input(shape=(max_query_words, max_chars), name="query characters")
inputs = [context_words_input, context_characters_input, query_words_input, query_characters_input]
# Create the model and force a call
model = QACNNnet(input_embedding_params,
embedding_encoder_params,
conv_input_projection_params,
model_encoder_params,
context_query_attention_params,
output_params,
vocab_size,
ignore_tokens,
dropout_rate)
model(inputs)
# Compile the model
model.compile(
# optimizer=LossScaleBelowOneOptimizer(optimizer),
optimizer=mixed_precision.LossScaleOptimizer(optimizer),
# optimizer,
run_eagerly=config.EAGER_MODE
)
return model
def main():
# tf.keras.utils.plot_model(model, "Architecture.png", show_shapes=True, expand_nested=True)
policyConfig = 'mixed_float16'
policy = tf.keras.mixed_precision.Policy(policyConfig)
mixed_precision.set_global_policy(policy)
input_train, input_validation, output_train, output_validation = load_data()
if config.USE_GENERATOR:
generator = Generator(input_train, output_train, input_validation, output_validation)
valid_w_context, valid_c_context, valid_w_query, valid_c_query = input_validation
if not config.USE_GENERATOR:
train_w_context, train_c_context, train_w_query, train_c_query = input_train
output_validation = np.expand_dims(output_validation, -1)
output_train = np.expand_dims(output_train, -1)
if config.DEBUG:
config.BATCH_SIZE = 32
n_val = 10
valid_w_context = valid_w_context[:n_val]
valid_c_context = valid_c_context[:n_val]
valid_w_query = valid_w_query[:n_val]
valid_c_query = valid_c_query[:n_val]
output_validation = output_validation[:n_val]
if not config.USE_GENERATOR:
n_train = 50
train_w_context = train_w_context[:n_train]
train_c_context = train_c_context[:n_train]
train_w_query = train_w_query[:n_train]
train_c_query = train_c_query[:n_train]
output_train = output_train[:n_train]
if not config.USE_GENERATOR and config.TRAIN_ON_FULL_DATASET:
train_w_context = np.concatenate((train_w_context, valid_w_context), axis=0)
train_c_context = np.concatenate((train_c_context, valid_c_context), axis=0)
train_w_query = np.concatenate((train_w_query, valid_w_query), axis=0)
train_c_query = np.concatenate((train_c_query, valid_c_query), axis=0)
output_train = np.concatenate((output_train, output_validation), axis=0)
# Build the model
model = build_model(config.input_embedding_params,
config.embedding_encoder_params,
config.conv_input_projection_params,
config.model_encoder_params,
config.context_query_attention_params,
config.output_params,
config.MAX_CONTEXT_WORDS,
config.MAX_QUERY_WORDS,
config.MAX_CHARS,
config.OPTIMIZER,
config.WORD_VOCAB_SIZE + 1,
config.IGNORE_TOKENS,
config.DROPOUT_RATE)
print("Model succesfully built!")
model.summary()
# Load model weights if required
if config.LOAD_WEIGHTS:
if os.path.exists(config.CHECKPOINT_PATH + ".index"):
print("Loading model's weights...")
model.load_weights(config.CHECKPOINT_PATH)
print("Model's weights successfully loaded!")
else:
print("WARNING: model's weights not found, the model will be executed with initialized random weights.")
print("Ignore this warning if it is a test.")
# Add model checkpoint callbacks
callbacks_list = []
if config.SAVE_WEIGHTS:
callbacks_list.append(
tf.keras.callbacks.ModelCheckpoint(filepath=config.CHECKPOINT_PATH, save_weights_only=True, verbose=1))
# Start the model training
if config.USE_GENERATOR:
history = model.fit(
generator,
validation_data=(
[valid_w_context, valid_c_context,
valid_w_query, valid_c_query],
output_validation) if not config.TRAIN_ON_FULL_DATASET else None,
verbose=1,
batch_size=config.BATCH_SIZE,
epochs=config.EPOCHS,
callbacks=callbacks_list)
else:
history = model.fit(
x=[train_w_context, train_c_context, train_w_query, train_c_query],
y=output_train,
validation_data=(
[valid_w_context, valid_c_context,
valid_w_query, valid_c_query],
output_validation) if not config.TRAIN_ON_FULL_DATASET else None,
verbose=1,
batch_size=config.BATCH_SIZE,
epochs=config.EPOCHS,
callbacks=callbacks_list)
return history, model
if __name__ == '__main__':
history, model = main()