-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathClassicalND.v
212 lines (197 loc) · 7.71 KB
/
ClassicalND.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
Require Export NaturalDeduction.
Require Import Subcontext.
Require Import NDSCEquiv.
Section Classical_ND.
Context {atom : Type}.
Reserved Notation "Γ ⊢c P" (no associativity, at level 61).
Inductive classic_ND_proves : list (prop atom) -> prop atom -> Prop :=
| classic_ND_exfalso_quodlibet {Γ P} :
Γ ⊢c ⊥ ->
Γ ⊢c P
| classic_ND_True_intro {Γ} :
Γ ⊢c ⊤
| classic_ND_or_introl {Γ P Q} :
Γ ⊢c P ->
Γ ⊢c P ∨ Q
| classic_ND_or_intror {Γ P Q} :
Γ ⊢c Q ->
Γ ⊢c P ∨ Q
| classic_ND_proof_by_cases {Γ P Q R} :
Γ ⊢c P ∨ Q ->
P :: Γ ⊢c R ->
Q :: Γ ⊢c R ->
Γ ⊢c R
| classic_ND_and_intro {Γ P Q} :
Γ ⊢c P ->
Γ ⊢c Q ->
Γ ⊢c P ∧ Q
| classic_ND_and_elim {Γ P Q R} :
Γ ⊢c P ∧ Q ->
P :: Q :: Γ ⊢c R ->
Γ ⊢c R
| classic_ND_cond_proof {Γ P Q} :
P :: Γ ⊢c Q ->
Γ ⊢c P ⊃ Q
| classic_ND_modus_ponens {Γ P Q} :
Γ ⊢c P ⊃ Q ->
Γ ⊢c P ->
Γ ⊢c Q
| classic_ND_assumption {Γ P} :
In P Γ ->
Γ ⊢c P
| classic_ND_cut {Γ P Q} :
Γ ⊢c P ->
P :: Γ ⊢c Q ->
Γ ⊢c Q
| classic_ND_proof_by_contradiction {Γ P} :
¬P :: Γ ⊢c ⊥ ->
Γ ⊢c P
where "Γ ⊢c P" := (classic_ND_proves Γ P).
Proposition ND_impl_classic_ND {Γ P} :
Γ ⊢ P -> Γ ⊢c P.
Proof.
induction 1;
[ econstructor 1 | econstructor 2 | econstructor 3 |
econstructor 4 | econstructor 5 | econstructor 6 |
econstructor 7 | econstructor 8 | econstructor 9 |
econstructor 10 | econstructor 11 ]; eauto.
Qed.
Proposition classic_ND_NNPP {Γ P} :
Γ ⊢c (¬ ¬ P) ⊃ P.
Proof.
apply @classic_ND_cond_proof. apply @classic_ND_proof_by_contradiction.
apply @classic_ND_modus_ponens with (P := ¬ P);
apply @classic_ND_assumption; unfold not_prop; prove_In.
Qed.
Proposition classic_ND_excluded_middle {Γ P} :
Γ ⊢c P ∨ ¬ P.
Proof.
apply @classic_ND_proof_by_contradiction.
apply @classic_ND_modus_ponens with (P := P ∨ ¬ P).
+ apply @classic_ND_assumption; unfold not_prop; prove_In.
+ apply @classic_ND_or_intror. apply @classic_ND_cond_proof.
apply @classic_ND_modus_ponens with (P := P ∨ ¬ P).
- apply @classic_ND_assumption; unfold not_prop; prove_In.
- apply @classic_ND_or_introl.
apply @classic_ND_assumption; prove_In.
Qed.
Proposition classic_ND_Peirce {Γ P Q} :
Γ ⊢c ((P ⊃ Q) ⊃ P) ⊃ P.
Proof.
apply @classic_ND_cond_proof.
apply @classic_ND_proof_by_contradiction.
apply @classic_ND_modus_ponens with (P := P).
+ apply @classic_ND_assumption; unfold not_prop; prove_In.
+ apply @classic_ND_modus_ponens with (P := P ⊃ Q).
- apply @classic_ND_assumption; prove_In.
- apply @classic_ND_cond_proof. apply @classic_ND_exfalso_quodlibet.
apply @classic_ND_modus_ponens with (P := P);
apply @classic_ND_assumption; unfold not_prop; prove_In.
Qed.
Class ND_normal (P : prop atom) : Prop :=
| ND_normality : forall Γ, Γ ⊢ (¬ ¬ P) ⊃ P.
Lemma ND_double_neg_elim_for_normal {Γ P Q} `{ND_normal Q} :
Γ ⊢ (¬ ¬ P) -> P :: Γ ⊢ Q -> Γ ⊢ Q.
Proof.
intros. apply @ND_modus_ponens with (P := ¬ ¬ Q).
+ apply H.
+ apply @ND_cond_proof. apply @ND_cut with (P := ¬ ¬ P).
- eapply @ND_context_extension with (3 := H0);
(prove_subcontext || reflexivity).
- apply @ND_modus_ponens with (P := ¬ P).
* apply @ND_assumption; unfold not_prop; prove_In.
* apply @ND_cond_proof. apply @ND_modus_ponens with (P := Q).
{ apply @ND_assumption; unfold not_prop; prove_In. }
{ eapply @ND_context_extension with (3 := H1);
(prove_subcontext || reflexivity). }
Qed.
Instance ND_normal_bot : ND_normal ⊥.
Proof.
intro Γ. unfold not_prop. apply @ND_cond_proof.
apply @ND_modus_ponens with (P := ⊥ ⊃ ⊥).
+ apply @ND_assumption; prove_In.
+ apply @ND_cond_proof. apply @ND_assumption; prove_In.
Qed.
Instance ND_normal_impl {P Q} : ND_normal Q -> ND_normal (P ⊃ Q).
Proof.
intros ? Γ. do 2 apply @ND_cond_proof.
apply @ND_double_neg_elim_for_normal with (P := P ⊃ Q); auto.
+ apply @ND_assumption; prove_In.
+ apply @ND_modus_ponens with (P := P);
apply @ND_assumption; prove_In.
Qed.
Theorem classic_ND_equiv {Γ P} :
Γ ⊢c P <-> Γ ⊢ ¬ (¬ P).
Proof.
split; intros.
+ induction H.
- apply @ND_exfalso_quodlibet. apply @ND_modus_ponens with (P := ¬ ⊥).
* assumption.
* apply @ND_cond_proof. apply @ND_assumption; prove_In.
- apply @ND_cond_proof. apply @ND_modus_ponens with (P := ⊤).
* apply @ND_assumption; unfold not_prop; prove_In.
* apply @ND_True_intro.
- apply (ND_double_neg_elim_for_normal IHclassic_ND_proves).
apply @ND_cond_proof. apply @ND_modus_ponens with (P := P ∨ Q).
* apply @ND_assumption; unfold not_prop; prove_In.
* apply @ND_or_introl. apply @ND_assumption; prove_In.
- apply (ND_double_neg_elim_for_normal IHclassic_ND_proves).
apply @ND_cond_proof. apply @ND_modus_ponens with (P := P ∨ Q).
* apply @ND_assumption; unfold not_prop; prove_In.
* apply @ND_or_intror. apply @ND_assumption; prove_In.
- apply (ND_double_neg_elim_for_normal IHclassic_ND_proves1).
apply @ND_proof_by_cases with (P := P) (Q := Q).
* apply @ND_assumption; prove_In.
* apply @ND_context_extension with (3 := IHclassic_ND_proves2);
(prove_subcontext || reflexivity).
* apply @ND_context_extension with (3 := IHclassic_ND_proves3);
(prove_subcontext || reflexivity).
- apply (ND_double_neg_elim_for_normal IHclassic_ND_proves1).
apply (ND_double_neg_elim_for_normal (P := Q)).
* apply @ND_context_extension with (3 := IHclassic_ND_proves2);
(prove_subcontext || reflexivity).
* apply @ND_cond_proof. apply @ND_modus_ponens with (P := P ∧ Q).
{ apply @ND_assumption; unfold not_prop; prove_In. }
{ apply @ND_and_intro; apply @ND_assumption; prove_In. }
- apply (ND_double_neg_elim_for_normal IHclassic_ND_proves1).
apply @ND_and_elim with (P := P) (Q := Q).
* apply @ND_assumption; prove_In.
* apply @ND_context_extension with (3 := IHclassic_ND_proves2);
(prove_subcontext || reflexivity).
- apply @ND_cond_proof. apply @ND_modus_ponens with (P := P ⊃ Q).
* apply @ND_assumption; unfold not_prop; prove_In.
* apply @ND_cond_proof. apply @ND_cut with (P := ¬ ¬ Q).
{ apply @ND_context_extension with (3 := IHclassic_ND_proves);
(prove_subcontext || reflexivity). }
{ apply @ND_exfalso_quodlibet. apply @ND_modus_ponens with (P := ¬ Q).
+ apply @ND_assumption; unfold not_prop; prove_In.
+ apply @ND_cond_proof. apply @ND_modus_ponens with (P := P ⊃ Q).
- apply @ND_assumption; unfold not_prop; prove_In.
- apply @ND_cond_proof. apply @ND_assumption; prove_In. }
- apply (ND_double_neg_elim_for_normal IHclassic_ND_proves1).
apply (ND_double_neg_elim_for_normal (P := P)).
* apply @ND_context_extension with (3 := IHclassic_ND_proves2);
(prove_subcontext || reflexivity).
* apply @ND_cond_proof. apply @ND_modus_ponens with (P := Q).
{ apply @ND_assumption; unfold not_prop; prove_In. }
{ apply @ND_modus_ponens with (P := P);
apply @ND_assumption; prove_In. }
- apply @ND_cond_proof. apply @ND_modus_ponens with (P := P).
* apply @ND_assumption; unfold not_prop; prove_In.
* apply @ND_assumption; right; assumption.
- apply (ND_double_neg_elim_for_normal IHclassic_ND_proves1).
assumption.
- apply @ND_cond_proof. apply @ND_modus_ponens with (P := ¬ ⊥).
* assumption.
* apply @ND_cond_proof. apply @ND_assumption; prove_In.
+ apply @classic_ND_modus_ponens with (P := ¬ (¬ P));
auto using @ND_impl_classic_ND, @classic_ND_NNPP.
Qed.
Corollary classic_ND_consistent : ~ (nil ⊢c ⊥).
Proof.
rewrite classic_ND_equiv. intro. eapply @ND_consistent.
eapply @ND_modus_ponens with (P := ¬ ⊥).
+ eassumption.
+ apply @ND_cond_proof. apply @ND_assumption; prove_In.
Qed.
End Classical_ND.