-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
93 lines (70 loc) · 2.73 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import numpy as np
from flask import Flask, request, jsonify, render_template
import pickle
import pandas as pd
import re
import nltk
from nltk.corpus import stopwords
from Sastrawi.Stemmer.StemmerFactory import StemmerFactory
from sklearn.feature_extraction.text import TfidfVectorizer
nltk.download('punkt')
nltk.download('stopwords')
app = Flask(__name__)
def clean(data):
tweets = []
for tweet in data:
tweet = re.sub(r"'(?:\@|https?\://)\S+", "", tweet)
tweet = re.sub('\n', '', tweet)
tweet = re.sub('rt', '', tweet)
tweet = re.sub("[^a-zA-Z^']", " ", tweet)
tweet = re.sub(" {2,}", " ", tweet)
tweet = tweet.strip()
tweets.append(tweet)
return tweets
def case_fold(data):
return data.str.lower()
def token(data):
return data.apply(nltk.word_tokenize)
def stop_words(data) :
stop_words = set(stopwords.words('indonesian'))
return data.apply(lambda x: [item for item in x if item not in stop_words])
def stem(data):
factory = StemmerFactory()
stemmer = factory.create_stemmer()
return data.apply(lambda x: [ stemmer.stem(item) for item in x])
df_clean = pd.read_csv('data_clean.csv')
def tf_idf(data):
vectorizer = TfidfVectorizer()
return vectorizer, vectorizer.fit_transform(data)
df_clean['tweets'] = df_clean['tweets'].apply(lambda x: " ".join(x) if isinstance(x, list) else x)
vec,x = tf_idf(df_clean['tweets'])
label = np.array(df_clean['label'].values)
model = pickle.load(open('model_mlp.pkl', 'rb'))
@app.route('/')
def home():
return render_template('index.html')
@app.route('/predict',methods=['POST'])
def predict():
model = pickle.load(open('model_mlp.pkl', 'rb'))
sentence = request.form.values()
sentence = [sentence]
sentence = pd.DataFrame(data=sentence,columns=['text'], index=[0])
sentence['text'] = clean(sentence['text'])
sentence['text'] = case_fold(sentence['text'])
sentence['text'] = token(sentence['text'])
sentence['text'] = stop_words(sentence['text'])
sentence['text'] = stem(sentence['text'])
sentence['text'] = sentence['text'].apply(lambda x: " ".join(x) if isinstance(x, list) else x)
clean_sentence = vec.transform(sentence['text'])
y_pred = model.predict(clean_sentence.toarray())
label_pred = 'Racism' if np.round(y_pred[0]) else 'Non Racism'
output = label_pred
return render_template('index.html', prediction_text='The tweet is detected : {}'.format(output))
@app.route('/results',methods=['POST'])
def results():
data = request.get_json(force=True)
prediction = model.predict(data.toarray())
output = prediction[0]
return jsonify(output)
if __name__ == "__main__":
app.run(debug=True)