forked from Yeonggi-hong/ECCV2022-ABAW-competition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
executable file
·194 lines (146 loc) · 6.9 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# -*- coding: utf-8 -*-
import os
import glob
from tqdm import tqdm
import argparse
import itertools
from matplotlib import pyplot as plt
from PIL import Image
import argparse
import pandas as pd
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import torch.utils.data as data
from torchvision.datasets import ImageFolder
from torchvision import transforms
from collections import OrderedDict
from tqdm import tqdm
#from natsorted import natsorted
from networks.models_tmp import MTL_finetuning
from networks.loss import AffinityLoss, PartitionLoss
from natsort import natsorted
import sys
from torch.autograd import Variable
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
test_csv_path = "../src/test1.csv"
img_path = "../cropped_aligned/"
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--testconfig', type=str, default='testconfig.txt', help='testsetting')
parser.add_argument('--test_path', type=str, default='path/to/test/', help='test dataset path.')
parser.add_argument('--model', type=str, default='path/to/model/', help='test model path.')
parser.add_argument('--batch_size', type=int, default=2048, help='Batch size.')
parser.add_argument('--workers', default=8, type=int, help='Number of data loading workers.')
return parser.parse_args()
class Testloader(data.Dataset):
def __init__(self, path, transform = None):
self.transform = transform
self.file_paths1= natsorted(glob.glob(path))
def __len__(self):
return len(self.file_paths1)
def __getitem__(self, idx):
path = self.file_paths1[idx]
name = path.replace("../../test_data/","")
image1 = Image.open(path).convert('RGB')
if self.transform is not None:
image1 = self.transform(image1)
return image1, name
class Model() :
def __init__(self, device) :
self.device = device
self.data_transforms = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
self.all_models = []
def load_all_models(self, weight_list):
print("Load all models ... ")
em_model = "RESNET50"
for model_name in weight_list:
em_arch = None
lm_arch = None
em_pretrained_weights = "../models/resnet50_ft_weight.pkl"
lm_pretrained_weights=None
pretrained_path = args.model
# load model from file
if "DINO_RESNET" in model_name :
print("DINO_RESNET************")
lm_pretrained_weights = "../models/checkpoint0060.pth"
lm_arch = 'resnet50'
model = MTL_finetuning(em_model_name = em_model, lm_model_name = "DINO_RESNET",
em_pretrained_weights = em_pretrained_weights, lm_pretrained_weights = lm_pretrained_weights,
checkpoint_key = "student", em_arch = em_arch, lm_arch = lm_arch, patch_size = 16, num_class = 6, pretrained = True, num_head = 4)
checkpoint = torch.load(pretrained_path + model_name)
elif "MobileVITv2" in model_name:
print("MobileVit************")
lm_pretrained_weights = None
#args.batch_size = 128
model = MTL_finetuning(em_model_name = em_model, lm_model_name = "MobileVITv2",
em_pretrained_weights = em_pretrained_weights, lm_pretrained_weights = lm_pretrained_weights,
checkpoint_key = "student", em_arch = em_arch, lm_arch = lm_arch, patch_size = 16, num_class = 6, pretrained = True, num_head = 4)
checkpoint = torch.load(pretrained_path + model_name)
else:
print("RESNET************")
lm_pretrained_weights = "../models/resnet50_ft_weight.pkl"
model = MTL_finetuning(em_model_name = em_model, lm_model_name = "RESNET50",
em_pretrained_weights = em_pretrained_weights, lm_pretrained_weights = lm_pretrained_weights,
checkpoint_key = "student", em_arch = em_arch, lm_arch = lm_arch, patch_size = 16, num_class = 6, pretrained = True, num_head = 4)
checkpoint = torch.load(pretrained_path + model_name)
if ((device.type == 'cuda') and (torch.cuda.device_count()>1)):
print('Multi GPU activate')
model = nn.DataParallel(model)
model.load_state_dict(checkpoint['model_state_dict'], strict=True)
model.to(self.device)
model.eval()
model_ = model
self.all_models.append(model_)
print('>loaded %s' % model_name)
return self.all_models
def fit(self, img):
with torch.set_grad_enabled(False):
img = img.to(self.device)
DANloss = 0
mse = 0
nmse = 0
outs = None
for i in self.all_models:
out, out2, feat, heads = i(img, img)
if(outs == None):
outs=out
else:
outs+=out
_, pred = torch.max(outs,1)
index = pred
return index, outs.size(0), DANloss, mse, nmse
if __name__ == "__main__":
args = parse_args()
weight_list = os.listdir(args.pretrained)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = Model(device)
model.load_all_models(weight_list)
data_transforms_val = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
print("data Loader working !")
val_dataset = Testloader(args.test_path+"*.jpg",transform=data_transforms_val)
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size = args.batch_size,
num_workers = args.workers,
shuffle = False,
pin_memory = True,
)
test = []
with open(args.testconfig, 'w') as file:
file.writelines("image,expression\n")
with torch.no_grad():
for (imgs,names) in tqdm(val_loader):
imgs = imgs.float()
predicts, _, _, _, _ = model.fit(imgs)
for name ,pred in zip(names,predicts.cpu().detach().numpy()):
file.writelines(name+","+str(pred)+"\n")
break