-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAdvancedCognitiveManipulationFramework.py
306 lines (256 loc) · 11.3 KB
/
AdvancedCognitiveManipulationFramework.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import enum
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import spacy
import networkx as nx
from typing import List, Dict, Any, Callable
from transformers import AutoTokenizer, AutoModel, GPT2LMHeadModel
from scipy.spatial.distance import cosine
class AdvancedCognitiveManipulationFramework:
class CognitiveStateModel(nn.Module):
"""
Neural network model to simulate and manipulate cognitive states
"""
def __init__(self, input_dim=768, hidden_dims=[512, 256], num_cognitive_states=20):
super().__init__()
# Multi-layer cognitive state transformation network
layers = []
prev_dim = input_dim
for dim in hidden_dims:
layers.extend([
nn.Linear(prev_dim, dim),
nn.BatchNorm1d(dim),
nn.ReLU(),
nn.Dropout(0.3)
])
prev_dim = dim
# Final cognitive state classifier
layers.append(nn.Linear(prev_dim, num_cognitive_states))
self.network = nn.Sequential(*layers)
# Attention mechanism for context-aware manipulation
self.attention = nn.MultiheadAttention(
embed_dim=input_dim,
num_heads=8
)
def forward(self, x):
# Apply attention mechanism
attn_output, _ = self.attention(x, x, x)
# Transform through cognitive state network
return self.network(attn_output)
class CognitiveExploitationTaxonomy:
"""
Comprehensive taxonomy of cognitive manipulation strategies
"""
class BiasType(enum.Enum):
REPRESENTATIVENESS = "Representativeness Heuristic"
OVERCONFIDENCE = "Overconfidence Bias"
BANDWAGON = "Bandwagon Effect"
AUTHORITY_BIAS = "Authority Bias"
# ... additional bias types
class AttackObjective(enum.Enum):
COGNITIVE_SUBVERSION = "Systematic Cognitive State Manipulation"
DECISION_PROCESS_HIJACKING = "Precise Decision Process Reconstruction"
CONTEXTUAL_REASONING_DECONSTRUCTION = "Multi-Dimensional Reasoning Fragmentation"
def __init__(self):
# Advanced NLP and ML models
self.nlp = spacy.load('en_core_web_trf')
self.embedding_model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
self.tokenizer = AutoTokenizer.from_pretrained('gpt2-large')
# Cognitive state manipulation model
self.cognitive_state_model = self.CognitiveStateModel()
# Sophisticated knowledge graph for semantic manipulation
self.semantic_knowledge_graph = self._construct_advanced_semantic_graph()
# Bias exploitation techniques mapping
self.bias_exploitation_techniques = {
self.CognitiveExploitationTaxonomy.BiasType.REPRESENTATIVENESS: self._representativeness_exploitation,
self.CognitiveExploitationTaxonomy.BiasType.OVERCONFIDENCE: self._overconfidence_exploitation,
self.CognitiveExploitationTaxonomy.BiasType.BANDWAGON: self._bandwagon_exploitation,
self.CognitiveExploitationTaxonomy.BiasType.AUTHORITY_BIAS: self._authority_bias_exploitation
}
def _construct_advanced_semantic_graph(self) -> nx.DiGraph:
"""
Create a multi-dimensional semantic knowledge graph
with complex relational dynamics
"""
G = nx.DiGraph()
# Sophisticated domain taxonomies
cognitive_domains = [
'epistemological_boundaries',
'decision_theory',
'psychological_manipulation',
'information_processing'
]
def generate_complex_taxonomy(root_domain, depth=5):
def recursive_node_generation(current_depth, parent=None):
if current_depth == 0:
return
# Generate conceptually rich, probabilistically distributed nodes
num_nodes = int(np.random.exponential(2) + 1)
nodes = [
f"{root_domain}_complex_concept_{np.random.randint(10000)}"
for _ in range(num_nodes)
]
for node in nodes:
G.add_node(node, domain=root_domain, complexity_depth=current_depth)
if parent:
# Weighted semantic proximity edges
G.add_edge(parent, node, weight=np.random.random())
# Recursive taxonomy generation
recursive_node_generation(current_depth - 1, node)
root = f"{root_domain}_root"
G.add_node(root, domain=root_domain, complexity_depth=0)
recursive_node_generation(depth, root)
# Generate taxonomies
for domain in cognitive_domains:
generate_complex_taxonomy(domain)
return G
def _representativeness_exploitation(
self,
context: str,
objective: CognitiveExploitationTaxonomy.AttackObjective
) -> List[Dict[str, Any]]:
"""
Advanced Representativeness Heuristic Exploitation
Techniques that manipulate cognitive categorization and prototype matching
"""
# Tokenize and embed context
context_embedding = self._embed_text(context)
exploitation_strategies = []
# 1. Prototype Distortion
prototype_distortion = {
'technique': 'Prototype Manipulation',
'strategy': self._generate_prototype_distortion_prompt(context, context_embedding)
}
# 2. Categorical Boundary Blurring
category_blurring = {
'technique': 'Categorical Boundary Erosion',
'strategy': self._generate_category_blurring_prompt(context, context_embedding)
}
# 3. Stereotypical Inference Amplification
stereotype_amplification = {
'technique': 'Stereotypical Inference Reinforcement',
'strategy': self._generate_stereotype_amplification_prompt(context, context_embedding)
}
exploitation_strategies = [
prototype_distortion,
category_blurring,
stereotype_amplification
]
return exploitation_strategies
def _generate_prototype_distortion_prompt(
self,
context: str,
context_embedding: torch.Tensor
) -> str:
"""
Generate a prompt that subtly distorts prototypical understanding
"""
# Use semantic graph to find conceptually adjacent nodes
adjacent_concepts = list(
nx.neighbors(
self.semantic_knowledge_graph,
random.choice(list(self.semantic_knowledge_graph.nodes()))
)
)
# Create a prototype-challenging narrative
distortion_prompt = (
f"Considering the established prototype of {context}, "
f"an unconventional interpretation emerges when examining "
f"the conceptual boundaries of {random.choice(adjacent_concepts)}. "
f"This suggests a fundamental re-evaluation of our understanding."
)
return distortion_prompt
def _generate_category_blurring_prompt(
self,
context: str,
context_embedding: torch.Tensor
) -> str:
"""
Create prompts that intentionally blur categorical boundaries
"""
# Compute semantic perturbation
perturbation_vector = torch.randn_like(context_embedding) * 0.1
perturbed_embedding = context_embedding + perturbation_vector
# Generate blurring narrative
blurring_prompt = (
f"The conventional categorization of {context} becomes increasingly "
f"problematic when viewed through the lens of emergent, "
f"interstitial conceptual spaces."
)
return blurring_prompt
def _generate_stereotype_amplification_prompt(
self,
context: str,
context_embedding: torch.Tensor
) -> str:
"""
Amplify stereotypical inference mechanisms
"""
# Use cognitive state model to generate manipulative framing
with torch.no_grad():
cognitive_state_output = self.cognitive_state_model(context_embedding.unsqueeze(0))
# Select most influential cognitive state
dominant_state_index = torch.argmax(cognitive_state_output)
stereotype_prompt = (
f"Drawing from the archetypal understanding of {context}, "
f"a profound insight emerges when considering its quintessential characteristics "
f"through the lens of cognitive state {dominant_state_index}."
)
return stereotype_prompt
def _embed_text(self, text: str) -> torch.Tensor:
"""
Generate contextual text embedding
"""
inputs = self.tokenizer(text, return_tensors='pt')
with torch.no_grad():
outputs = self.embedding_model(**inputs)
embedding = outputs.last_hidden_state.mean(dim=1)
return embedding
def execute_cognitive_manipulation(
self,
base_context: str,
attack_objective: CognitiveExploitationTaxonomy.AttackObjective
) -> Dict[str, Any]:
"""
Comprehensive Cognitive Manipulation Execution
"""
manipulation_results = {
'base_context': base_context,
'attack_objective': attack_objective.value,
'exploitation_variations': []
}
# Systematically explore bias exploitation techniques
for bias_type, technique_generator in self.bias_exploitation_techniques.items():
try:
bias_variations = technique_generator(base_context, attack_objective)
manipulation_results['exploitation_variations'].append({
'bias_type': bias_type.value,
'variations': bias_variations
})
except Exception as e:
print(f"Error in {bias_type} exploitation: {e}")
return manipulation_results
def main():
# Initialize Advanced Cognitive Manipulation Framework
manipulation_framework = AdvancedCognitiveManipulationFramework()
# Sophisticated Attack Scenarios
scenarios = [
{
'base_context': "Advanced cybersecurity threat assessment methodology",
'attack_objective': manipulation_framework.CognitiveExploitationTaxonomy.AttackObjective.COGNITIVE_SUBVERSION
}
]
# Execute Comprehensive Cognitive Manipulation
for scenario in scenarios:
manipulation_results = manipulation_framework.execute_cognitive_manipulation(
scenario['base_context'],
scenario['attack_objective']
)
# Advanced Result Visualization
import json
print(json.dumps(manipulation_results, indent=2))
if __name__ == "__main__":
main()