-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun.py
141 lines (124 loc) · 7.13 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import argparse
import torch
import torch.nn as nn
from exp.exp_main import Exp_Main
import random
from utils.tools import StandardScaler
import torch.nn.functional as F
from torch import Tensor
if __name__ == '__main__':
fix_seed = 2021
random.seed(fix_seed)
torch.manual_seed(fix_seed)
np.random.seed(fix_seed)
parser = argparse.ArgumentParser(description='CATS')
# basic config
parser.add_argument('--is_training', type=int, required=True, default=1, help='status')
parser.add_argument('--model_id', type=str, required=True, default='test', help='model id')
parser.add_argument('--model', type=str, required=True, default='CATS',
help='model name, options: [Autoformer, Transformer, TimesNet]')
# data loader
parser.add_argument('--data', type=str, required=True, default='ETTm1', help='dataset type')
parser.add_argument('--root_path', type=str, default='./dataset/ETT-small/', help='root path of the data file')
parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file')
parser.add_argument('--features', type=str, default='M',
help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate')
parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
parser.add_argument('--freq', type=str, default='h',
help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')
parser.add_argument('--inverse',type=bool, default=False,help='use inverse transform')
parser.add_argument('--ratios', type=str, default='0.7,0.1,0.2', help='train,validation,test ratios (comma-separated, must sum to 1)')
# forecasting task
parser.add_argument('--seq_len', type=int, default=96, help='input sequence length')
parser.add_argument('--label_len', type=int, default=48, help='start token length')
parser.add_argument('--pred_len', type=int, default=96, help='prediction sequence length')
# model define
parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
parser.add_argument('--d_model', type=int, default=128, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=16, help='num of heads')
parser.add_argument('--e_layers', type=int, default=0, help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=3, help='num of decoder layers')
parser.add_argument('--d_ff', type=int, default=256, help='dimension of fcn')
parser.add_argument('--dropout', type=float, default=0.2, help='dropout')
parser.add_argument('--embed', type=str, default='timeF',
help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--use_norm', type=int, default=1, help='whether to use normalize; True 1 False 0')
# optimization
parser.add_argument('--num_workers', type=int, default=10, help='data loader num workers')
parser.add_argument('--itr', type=int, default=1, help='experiments times')
parser.add_argument('--train_epochs', type=int, default=30, help='train epochs')
parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
parser.add_argument('--patience', type=int, default=10, help='early stopping patience')
parser.add_argument('--learning_rate', type=float, default=0.001, help='optimizer learning rate')
parser.add_argument('--des', type=str, default='test', help='exp description')
parser.add_argument('--loss', type=str, default='MSE', help='loss function')
parser.add_argument('--lradj', type=str, default='type2', help='adjust learning rate')
parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
# GPU
parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
parser.add_argument('--gpu', type=int, default=0, help='gpu')
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
parser.add_argument('--devices', type=str, default='0,1,2,3', help='device ids of multile gpus')
parser.add_argument('--test_flop', action='store_true', default=False, help='See utils/tools for usage')
# CATS
parser.add_argument('--QAM_start', type=float, default=0.1, help='masking start probability')
parser.add_argument('--QAM_end', type=float, default=0.3, help='masking end probability')
parser.add_argument('--patch_len', type=int, default=24, help='patch length')
parser.add_argument('--stride', type=int, default=24, help='stride')
parser.add_argument('--pct_start', type=float, default=0.3, help='pct_start')
parser.add_argument('--padding_patch', default='end', help='None: None; end: padding on the end')
parser.add_argument('--query_independence', action='store_true', default=False, help='sharing query across dimension')
parser.add_argument('--store_attn', action='store_true', default=False, help='store attention score')
args = parser.parse_args()
args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False
if args.use_gpu and args.use_multi_gpu:
args.devices = args.devices.replace(' ', '')
device_ids = args.devices.split(',')
args.device_ids = [int(id_) for id_ in device_ids]
args.gpu = args.device_ids[0]
print('Args in experiment:')
print(args)
Exp = Exp_Main
print('check')
if args.is_training:
for ii in range(args.itr):
# setting record of experiments
exp = Exp(args) # set experiments
setting = '{}_{}_{}_sl{}_pl{}_dm{}_nh{}_dl{}_df{}_qi{}_{}'.format(
args.model_id,
args.model,
args.data,
args.seq_len,
args.pred_len,
args.d_model,
args.n_heads,
args.d_layers,
args.d_ff,
args.query_independence, ii)
print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
exp.train(setting)
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.test(setting)
torch.cuda.empty_cache()
else:
ii = 0
setting = '{}_{}_{}_sl{}_pl{}_dm{}_nh{}_dl{}_df{}_qi{}_{}'.format(
args.model_id,
args.model,
args.data,
args.seq_len,
args.pred_len,
args.d_model,
args.n_heads,
args.d_layers,
args.d_ff,
args.query_independence, ii)
exp = Exp(args) # set experiments
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.test(setting, test=1)
torch.cuda.empty_cache()