forked from aws/aws-lc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathp521.c
881 lines (778 loc) · 35.2 KB
/
p521.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
/*
------------------------------------------------------------------------------------
Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0 OR ISC
------------------------------------------------------------------------------------
*/
// Implementation of P-521 that uses Fiat-crypto for the field arithmetic
// found in third_party/fiat, similarly to p256.c and p384.c
#include <openssl/bn.h>
#include <openssl/ec.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include "../bn/internal.h"
#include "../cpucap/internal.h"
#include "../delocate.h"
#include "internal.h"
#include "ec_nistp.h"
#if !defined(OPENSSL_SMALL)
#if defined(EC_NISTP_USE_S2N_BIGNUM)
# include "../../../third_party/s2n-bignum/include/s2n-bignum_aws-lc.h"
#else
# if defined(EC_NISTP_USE_64BIT_LIMB)
# include "../../../third_party/fiat/p521_64.h"
# else
# include "../../../third_party/fiat/p521_32.h"
# endif
#endif
#if defined(EC_NISTP_USE_S2N_BIGNUM)
#define P521_NLIMBS (9)
typedef uint64_t p521_limb_t;
typedef uint64_t p521_felem[P521_NLIMBS]; // field element
static const p521_limb_t p521_felem_one[P521_NLIMBS] = {
0x0000000000000001, 0x0000000000000000,
0x0000000000000000, 0x0000000000000000,
0x0000000000000000, 0x0000000000000000,
0x0000000000000000, 0x0000000000000000,
0x0000000000000000};
// The field characteristic p.
static const p521_limb_t p521_felem_p[P521_NLIMBS] = {
0xffffffffffffffff, 0xffffffffffffffff,
0xffffffffffffffff, 0xffffffffffffffff,
0xffffffffffffffff, 0xffffffffffffffff,
0xffffffffffffffff, 0xffffffffffffffff,
0x1ff};
// s2n-bignum implementation of field arithmetic
#define p521_felem_add(out, in0, in1) bignum_add_p521(out, in0, in1)
#define p521_felem_sub(out, in0, in1) bignum_sub_p521(out, in0, in1)
#define p521_felem_opp(out, in0) bignum_neg_p521(out, in0)
#define p521_felem_to_bytes(out, in0) bignum_tolebytes_p521(out, in0)
#define p521_felem_from_bytes(out, in0) bignum_fromlebytes_p521(out, in0)
#define p521_felem_mul(out, in0, in1) bignum_mul_p521_selector(out, in0, in1)
#define p521_felem_sqr(out, in0) bignum_sqr_p521_selector(out, in0)
#else // EC_NISTP_USE_S2N_BIGNUM
#if defined(EC_NISTP_USE_64BIT_LIMB)
// In the 64-bit case Fiat-crypto represents a field element by 9 58-bit digits.
#define P521_NLIMBS (9)
typedef uint64_t p521_felem[P521_NLIMBS]; // field element
typedef uint64_t p521_limb_t;
// One in Fiat-crypto's representation (58-bit digits).
static const p521_limb_t p521_felem_one[P521_NLIMBS] = {
0x0000000000000001, 0x0000000000000000,
0x0000000000000000, 0x0000000000000000,
0x0000000000000000, 0x0000000000000000,
0x0000000000000000, 0x0000000000000000,
0x0000000000000000};
// The field characteristic p in Fiat-crypto's representation (58-bit digits).
static const p521_limb_t p521_felem_p[P521_NLIMBS] = {
0x03ffffffffffffff, 0x03ffffffffffffff,
0x03ffffffffffffff, 0x03ffffffffffffff,
0x03ffffffffffffff, 0x03ffffffffffffff,
0x03ffffffffffffff, 0x03ffffffffffffff,
0x01ffffffffffffff};
#else // 64BIT; else 32BIT
// In the 32-bit case Fiat-crypto represents a field element by 19 digits
// with the following bit sizes:
// [28, 27, 28, 27, 28, 27, 27, 28, 27, 28, 27, 28, 27, 27, 28, 27, 28, 27, 27].
#define P521_NLIMBS (19)
typedef uint32_t p521_felem[P521_NLIMBS]; // field element
typedef uint32_t p521_limb_t;
// One in Fiat-crypto's representation.
static const p521_limb_t p521_felem_one[P521_NLIMBS] = {
0x0000001, 0x0000000, 0x0000000, 0x0000000,
0x0000000, 0x0000000, 0x0000000, 0x0000000,
0x0000000, 0x0000000, 0x0000000, 0x0000000,
0x0000000, 0x0000000, 0x0000000, 0x0000000,
0x0000000, 0x0000000, 0x0000000};
// The field characteristic p in Fiat-crypto's representation.
static const p521_limb_t p521_felem_p[P521_NLIMBS] = {
0xfffffff, 0x7ffffff, 0xfffffff, 0x7ffffff,
0xfffffff, 0x7ffffff, 0x7ffffff, 0xfffffff,
0x7ffffff, 0xfffffff, 0x7ffffff, 0xfffffff,
0x7ffffff, 0x7ffffff, 0xfffffff, 0x7ffffff,
0xfffffff, 0x7ffffff, 0x7ffffff};
#endif // 64BIT
// Fiat-crypto implementation of field arithmetic
#define p521_felem_add(out, in0, in1) fiat_secp521r1_carry_add(out, in0, in1)
#define p521_felem_sub(out, in0, in1) fiat_secp521r1_carry_sub(out, in0, in1)
#define p521_felem_opp(out, in0) fiat_secp521r1_carry_opp(out, in0)
#define p521_felem_mul(out, in0, in1) fiat_secp521r1_carry_mul(out, in0, in1)
#define p521_felem_sqr(out, in0) fiat_secp521r1_carry_square(out, in0)
#define p521_felem_to_bytes(out, in0) fiat_secp521r1_to_bytes(out, in0)
#define p521_felem_from_bytes(out, in0) fiat_secp521r1_from_bytes(out, in0)
#endif // EC_NISTP_USE_S2N_BIGNUM
static p521_limb_t p521_felem_nz(const p521_limb_t in1[P521_NLIMBS]) {
p521_limb_t is_not_zero = 0;
for (int i = 0; i < P521_NLIMBS; i++) {
is_not_zero |= in1[i];
}
#if defined(EC_NISTP_USE_S2N_BIGNUM)
return is_not_zero;
#else
// Fiat-crypto functions may return p (the field characteristic)
// instead of 0 in some cases, so we also check for that.
p521_limb_t is_not_p = 0;
for (int i = 0; i < P521_NLIMBS; i++) {
is_not_p |= (in1[i] ^ p521_felem_p[i]);
}
return ~(constant_time_is_zero_w(is_not_p) |
constant_time_is_zero_w(is_not_zero));
#endif
}
static void p521_felem_copy(p521_limb_t out[P521_NLIMBS],
const p521_limb_t in1[P521_NLIMBS]) {
for (size_t i = 0; i < P521_NLIMBS; i++) {
out[i] = in1[i];
}
}
static void p521_felem_cmovznz(p521_limb_t out[P521_NLIMBS],
p521_limb_t t,
const p521_limb_t z[P521_NLIMBS],
const p521_limb_t nz[P521_NLIMBS]) {
p521_limb_t mask = constant_time_is_zero_w(t);
for (size_t i = 0; i < P521_NLIMBS; i++) {
out[i] = constant_time_select_w(mask, z[i], nz[i]);
}
}
// NOTE: the input and output are in little-endian representation.
static void p521_from_generic(p521_felem out, const EC_FELEM *in) {
#ifdef OPENSSL_BIG_ENDIAN
uint8_t tmp[P521_EC_FELEM_BYTES];
bn_words_to_little_endian(tmp, P521_EC_FELEM_BYTES, in->words, P521_EC_FELEM_WORDS);
p521_felem_from_bytes(out, tmp);
#else
p521_felem_from_bytes(out, (const uint8_t *)in->words);
#endif
}
// NOTE: the input and output are in little-endian representation.
static void p521_to_generic(EC_FELEM *out, const p521_felem in) {
// |p521_felem_to_bytes| function will write the result to the first 66 bytes
// of |out| which is exactly how many bytes are needed to represent a 521-bit
// element.
// The number of BN_ULONGs to represent a 521-bit value is 9 and 17, when
// BN_ULONG is 64-bit and 32-bit, respectively. Nine 64-bit BN_ULONGs
// translate to 72 bytes, which means that we have to make sure that the
// extra 6 bytes are zeroed out. To avoid confusion over 32 vs. 64 bit
// systems and Fiat's vs. ours representation we zero out the whole element.
#ifdef OPENSSL_BIG_ENDIAN
uint8_t tmp[P521_EC_FELEM_BYTES];
p521_felem_to_bytes(tmp, in);
bn_little_endian_to_words(out->words, P521_EC_FELEM_WORDS, tmp, P521_EC_FELEM_BYTES);
#else
OPENSSL_memset((uint8_t*)out->words, 0, sizeof(out->words));
// Convert the element to bytes.
p521_felem_to_bytes((uint8_t *)out->words, in);
#endif
}
// Finite field inversion using Fermat Little Theorem.
// The code is autogenerated by the ECCKiila project:
// https://arxiv.org/abs/2007.11481
static void p521_felem_inv(p521_felem output, const p521_felem t1) {
/* temporary variables */
p521_felem acc, t2, t4, t8, t16, t32, t64;
p521_felem t128, t256, t512, t516, t518, t519;
p521_felem_sqr(acc, t1);
p521_felem_mul(t2, acc, t1);
p521_felem_sqr(acc, t2);
p521_felem_sqr(acc, acc);
p521_felem_mul(t4, acc, t2);
p521_felem_sqr(acc, t4);
for (int i = 0; i < 3; i++) {
p521_felem_sqr(acc, acc);
}
p521_felem_mul(t8, acc, t4);
p521_felem_sqr(acc, t8);
for (int i = 0; i < 7; i++) {
p521_felem_sqr(acc, acc);
}
p521_felem_mul(t16, acc, t8);
p521_felem_sqr(acc, t16);
for (int i = 0; i < 15; i++) {
p521_felem_sqr(acc, acc);
}
p521_felem_mul(t32, acc, t16);
p521_felem_sqr(acc, t32);
for (int i = 0; i < 31; i++) {
p521_felem_sqr(acc, acc);
}
p521_felem_mul(t64, acc, t32);
p521_felem_sqr(acc, t64);
for (int i = 0; i < 63; i++) {
p521_felem_sqr(acc, acc);
}
p521_felem_mul(t128, acc, t64);
p521_felem_sqr(acc, t128);
for (int i = 0; i < 127; i++) {
p521_felem_sqr(acc, acc);
}
p521_felem_mul(t256, acc, t128);
p521_felem_sqr(acc, t256);
for (int i = 0; i < 255; i++) {
p521_felem_sqr(acc, acc);
}
p521_felem_mul(t512, acc, t256);
p521_felem_sqr(acc, t512);
for (int i = 0; i < 3; i++) {
p521_felem_sqr(acc, acc);
}
p521_felem_mul(t516, acc, t4);
p521_felem_sqr(acc, t516);
p521_felem_sqr(acc, acc);
p521_felem_mul(t518, acc, t2);
p521_felem_sqr(acc, t518);
p521_felem_mul(t519, acc, t1);
p521_felem_sqr(acc, t519);
p521_felem_sqr(acc, acc);
p521_felem_mul(output, acc, t1);
}
static void p521_point_double(p521_felem x_out,
p521_felem y_out,
p521_felem z_out,
const p521_felem x_in,
const p521_felem y_in,
const p521_felem z_in) {
ec_nistp_point_double(p521_methods(), x_out, y_out, z_out, x_in, y_in, z_in);
}
// p521_point_add calculates (x1, y1, z1) + (x2, y2, z2)
//
// The method is taken from:
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-2007-bl
// adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
//
// Coq transcription and correctness proof:
// <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L467>
// <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L544>
static void p521_point_add(p521_felem x3, p521_felem y3, p521_felem z3,
const p521_felem x1,
const p521_felem y1,
const p521_felem z1,
const int mixed,
const p521_felem x2,
const p521_felem y2,
const p521_felem z2) {
ec_nistp_point_add(p521_methods(), x3, y3, z3, x1, y1, z1, mixed, x2, y2, z2);
}
#if defined(EC_NISTP_USE_S2N_BIGNUM)
DEFINE_METHOD_FUNCTION(ec_nistp_meth, p521_methods) {
out->felem_num_limbs = P521_NLIMBS;
out->felem_add = bignum_add_p521;
out->felem_sub = bignum_sub_p521;
out->felem_mul = bignum_mul_p521_selector;
out->felem_sqr = bignum_sqr_p521_selector;
out->felem_nz = p521_felem_nz;
out->point_dbl = p521_point_double;
out->point_add = p521_point_add;
}
#else
DEFINE_METHOD_FUNCTION(ec_nistp_meth, p521_methods) {
out->felem_num_limbs = P521_NLIMBS;
out->felem_add = fiat_secp521r1_carry_add;
out->felem_sub = fiat_secp521r1_carry_sub;
out->felem_mul = fiat_secp521r1_carry_mul;
out->felem_sqr = fiat_secp521r1_carry_square;
out->felem_nz = p521_felem_nz;
out->point_dbl = p521_point_double;
out->point_add = p521_point_add;
}
#endif
// OPENSSL EC_METHOD FUNCTIONS
// Takes the Jacobian coordinates (X, Y, Z) of a point and returns:
// (X', Y') = (X/Z^2, Y/Z^3).
static int ec_GFp_nistp521_point_get_affine_coordinates(
const EC_GROUP *group, const EC_JACOBIAN *point,
EC_FELEM *x_out, EC_FELEM *y_out) {
if (constant_time_declassify_w(ec_GFp_simple_is_at_infinity(group, point))) {
OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
return 0;
}
p521_felem z1, z2;
p521_from_generic(z1, &point->Z);
p521_felem_inv(z2, z1);
p521_felem_sqr(z2, z2);
if (x_out != NULL) {
p521_felem x;
p521_from_generic(x, &point->X);
p521_felem_mul(x, x, z2);
p521_to_generic(x_out, x);
}
if (y_out != NULL) {
p521_felem y;
p521_from_generic(y, &point->Y);
p521_felem_sqr(z2, z2); // z^-4
p521_felem_mul(y, y, z1); // y * z
p521_felem_mul(y, y, z2); // y * z^-3
p521_to_generic(y_out, y);
}
return 1;
}
static void ec_GFp_nistp521_add(const EC_GROUP *group, EC_JACOBIAN *r,
const EC_JACOBIAN *a, const EC_JACOBIAN *b) {
p521_felem x1, y1, z1, x2, y2, z2;
p521_from_generic(x1, &a->X);
p521_from_generic(y1, &a->Y);
p521_from_generic(z1, &a->Z);
p521_from_generic(x2, &b->X);
p521_from_generic(y2, &b->Y);
p521_from_generic(z2, &b->Z);
p521_point_add(x1, y1, z1, x1, y1, z1, 0 /* both Jacobian */, x2, y2, z2);
p521_to_generic(&r->X, x1);
p521_to_generic(&r->Y, y1);
p521_to_generic(&r->Z, z1);
}
static void ec_GFp_nistp521_dbl(const EC_GROUP *group, EC_JACOBIAN *r,
const EC_JACOBIAN *a) {
p521_felem x, y, z;
p521_from_generic(x, &a->X);
p521_from_generic(y, &a->Y);
p521_from_generic(z, &a->Z);
p521_point_double(x, y, z, x, y, z);
p521_to_generic(&r->X, x);
p521_to_generic(&r->Y, y);
p521_to_generic(&r->Z, z);
}
// ----------------------------------------------------------------------------
// SCALAR MULTIPLICATION OPERATIONS
// ----------------------------------------------------------------------------
//
// The method for computing scalar products in functions:
// - |ec_GFp_nistp521_point_mul|,
// - |ec_GFp_nistp521_point_mul_base|,
// - |ec_GFp_nistp521_point_mul_public|,
// is adapted from ECCKiila project (https://arxiv.org/abs/2007.11481).
// The main difference is that we use a window of size 7 instead of 5 for the
// first two functions. The potential issue with window sizes is that for some
// sizes a scalar can be found such that a case of point doubling instead of
// point addition happens in the scalar multiplication. This would make the
// multiplication non constant-time. Therefore, such window sizes have to be
// avoided. The windows size of 7 is chosen based on analysis analogous to
// the one in |ec_GFp_nistp_recode_scalar_bits| function in |util.c| file.
// See the analysis at the bottom of this file.
//
// Moreover, the order in which the digits of the scalar are processed in
// |ec_GFp_nistp521_point_mul_base| is different from the ECCKiila project, to
// ensure that the least significant digit is processed last which together
// with the window size 7 guarantees constant-time execution of the function.
//
// Another difference is that in |ec_GFp_nistp521_point_mul_public| function we
// use window size 5 for the public point and 7 for the base point. Here it is
// ok to use window of size 5 since the scalar is public and therefore the
// function doesn't have to be constant-time.
//
// The precomputed table of base point multiples is generated by the code in
// |make_tables.go| script.
// Constants for scalar encoding in the scalar multiplication functions.
#define P521_MUL_WSIZE (5) // window size w
// Assert the window size is 5 because the pre-computed table in |p521_table.h|
// is generated for window size 5.
OPENSSL_STATIC_ASSERT(P521_MUL_WSIZE == 5,
p521_scalar_mul_window_size_is_not_equal_to_five)
#define P521_MUL_TWO_TO_WSIZE (1 << P521_MUL_WSIZE)
// Number of |P521_MUL_WSIZE|-bit windows in a 521-bit value
#define P521_MUL_NWINDOWS ((521 + P521_MUL_WSIZE - 1)/P521_MUL_WSIZE)
// For the public point in |ec_GFp_nistp521_point_mul_public| function
// we use window size equal to 5.
#define P521_MUL_PUB_WSIZE (5)
// We keep only odd multiples in tables, hence the table size is (2^w)/2
#define P521_MUL_TABLE_SIZE (P521_MUL_TWO_TO_WSIZE >> 1)
#define P521_MUL_PUB_TABLE_SIZE (1 << (P521_MUL_PUB_WSIZE - 1))
// p521_select_point selects the |idx|-th projective point from the given
// precomputed table and copies it to |out| in constant time.
static void p521_select_point(p521_felem out[3],
size_t idx,
p521_felem table[][3],
size_t table_size) {
OPENSSL_memset(out, 0, sizeof(p521_felem) * 3);
for (size_t i = 0; i < table_size; i++) {
p521_limb_t mismatch = i ^ idx;
p521_felem_cmovznz(out[0], mismatch, table[i][0], out[0]);
p521_felem_cmovznz(out[1], mismatch, table[i][1], out[1]);
p521_felem_cmovznz(out[2], mismatch, table[i][2], out[2]);
}
}
// p521_select_point_affine selects the |idx|-th affine point from
// the given precomputed table and copies it to |out| in constant-time.
static void p521_select_point_affine(p521_felem out[2],
size_t idx,
const p521_felem table[][2],
size_t table_size) {
OPENSSL_memset(out, 0, sizeof(p521_felem) * 2);
for (size_t i = 0; i < table_size; i++) {
p521_limb_t mismatch = i ^ idx;
p521_felem_cmovznz(out[0], mismatch, table[i][0], out[0]);
p521_felem_cmovznz(out[1], mismatch, table[i][1], out[1]);
}
}
// Multiplication of a point by a scalar, r = [scalar]P.
// The product is computed with the use of a small table generated on-the-fly
// and the scalar recoded in the regular-wNAF representation.
//
// The precomputed (on-the-fly) table |p_pre_comp| holds 16 odd multiples of P:
// [2i + 1]P for i in [0, 15].
// Computing the negation of a point P = (x, y) is relatively easy:
// -P = (x, -y).
// So we may assume that instead of the above-mentioned 16, we have 32 points:
// [\pm 1]P, [\pm 3]P, [\pm 5]P, ..., [\pm 31]P.
//
// The 521-bit scalar is recoded (regular-wNAF encoding) into 105 signed digits
// each of length 5 bits, as explained in the |p521_felem_mul_scalar_rwnaf|
// function. Namely,
// scalar' = s_0 + s_1*2^5 + s_2*2^10 + ... + s_104*2^520,
// where digits s_i are in [\pm 1, \pm 3, ..., \pm 31]. Note that for an odd
// scalar we have that scalar = scalar', while in the case of an even
// scalar we have that scalar = scalar' - 1.
//
// The required product, [scalar]P, is computed by the following algorithm.
// 1. Initialize the accumulator with the point from |p_pre_comp|
// corresponding to the most significant digit s_104 of the scalar.
// 2. For digits s_i starting from s_104 down to s_0:
// 3. Double the accumulator 5 times. (note that doubling a point [a]P
// seven times results in [2^5*a]P).
// 4. Read from |p_pre_comp| the point corresponding to abs(s_i),
// negate it if s_i is negative, and add it to the accumulator.
//
// Note: this function is constant-time.
static void ec_GFp_nistp521_point_mul(const EC_GROUP *group, EC_JACOBIAN *r,
const EC_JACOBIAN *p,
const EC_SCALAR *scalar) {
p521_felem res[3] = {{0}, {0}, {0}}, tmp[3] = {{0}, {0}, {0}}, ftmp;
// Table of multiples of P: [2i + 1]P for i in [0, 15].
p521_felem p_pre_comp[P521_MUL_TABLE_SIZE][3];
// Set the first point in the table to P.
p521_from_generic(tmp[0], &p->X);
p521_from_generic(tmp[1], &p->Y);
p521_from_generic(tmp[2], &p->Z);
generate_table(p521_methods(), (ec_nistp_felem_limb*)p_pre_comp, tmp[0], tmp[1], tmp[2]);
// Recode the scalar.
int16_t rnaf[P521_MUL_NWINDOWS] = {0};
scalar_rwnaf(rnaf, P521_MUL_WSIZE, scalar, 521);
// Initialize the accumulator |res| with the table entry corresponding to
// the most significant digit of the recoded scalar (note that this digit
// can't be negative).
int16_t idx = rnaf[P521_MUL_NWINDOWS - 1] >> 1;
p521_select_point(res, idx, p_pre_comp, P521_MUL_TABLE_SIZE);
// Process the remaining digits of the scalar.
for (int i = P521_MUL_NWINDOWS - 2; i >= 0; i--) {
// Double |res| 7 times in each iteration.
for (size_t j = 0; j < P521_MUL_WSIZE; j++) {
p521_point_double(res[0], res[1], res[2], res[0], res[1], res[2]);
}
int16_t d = rnaf[i];
// is_neg = (d < 0) ? 1 : 0
int16_t is_neg = (d >> 15) & 1;
// d = abs(d)
d = (d ^ -is_neg) + is_neg;
idx = d >> 1;
// Select the point to add, in constant time.
p521_select_point(tmp, idx, p_pre_comp, P521_MUL_TABLE_SIZE);
// Negate y coordinate of the point tmp = (x, y); ftmp = -y.
p521_felem_opp(ftmp, tmp[1]);
// Conditionally select y or -y depending on the sign of the digit |d|.
p521_felem_cmovznz(tmp[1], is_neg, tmp[1], ftmp);
// Add the point to the accumulator |res|.
p521_point_add(res[0], res[1], res[2], res[0], res[1], res[2],
0 /* both Jacobian */, tmp[0], tmp[1], tmp[2]);
}
// Conditionally subtract P if the scalar is even, in constant-time.
// First, compute |tmp| = |res| + (-P).
p521_felem_copy(tmp[0], p_pre_comp[0][0]);
p521_felem_opp(tmp[1], p_pre_comp[0][1]);
p521_felem_copy(tmp[2], p_pre_comp[0][2]);
p521_point_add(tmp[0], tmp[1], tmp[2], res[0], res[1], res[2],
0 /* both Jacobian */, tmp[0], tmp[1], tmp[2]);
// Select |res| or |tmp| based on the |scalar| parity, in constant-time.
p521_felem_cmovznz(res[0], scalar->words[0] & 1, tmp[0], res[0]);
p521_felem_cmovznz(res[1], scalar->words[0] & 1, tmp[1], res[1]);
p521_felem_cmovznz(res[2], scalar->words[0] & 1, tmp[2], res[2]);
// Copy the result to the output.
p521_to_generic(&r->X, res[0]);
p521_to_generic(&r->Y, res[1]);
p521_to_generic(&r->Z, res[2]);
}
// Include the precomputed table for the based point scalar multiplication.
#include "p521_table.h"
// Multiplication of the base point G of P-521 curve with the given scalar.
// The product is computed with the Comb method using the precomputed table
// |p521_g_pre_comp| from |p521_table.h| file and the regular-wNAF scalar
// encoding.
//
// The |p521_g_pre_comp| table has 27 sub-tables each holding 16 points:
// 0 : [1]G, [3]G, ..., [31]G
// 1 : [1*2^20]G, [3*2^20]G, ..., [31*2^20]G
// ...
// i : [1*2^20i]G, [3*2^20i]G, ..., [31*2^20i]G
// ...
// 26 : [2^520]G, [3*2^520]G, ..., [31*2^520]G
// Computing the negation of a point P = (x, y) is relatively easy:
// -P = (x, -y).
// So we may assume that for each sub-table we have 32 points instead of 16:
// [\pm 1*2^20i]G, [\pm 3*2^20i]G, ..., [\pm 31*2^20i]G.
//
// The 521-bit |scalar| is recoded (regular-wNAF encoding) into 105 signed
// digits, each of length 5 bits, as explained in the
// |p521_felem_mul_scalar_rwnaf| function. Namely,
// scalar' = s_0 + s_1*2^5 + s_2*2^10 + ... + s_104*2^520,
// where digits s_i are in [\pm 1, \pm 3, ..., \pm 31]. Note that for an odd
// scalar we have that scalar = scalar', while in the case of an even
// scalar we have that scalar = scalar' - 1.
//
// To compute the required product, [scalar]G, we may do the following.
// Group the recoded digits of the scalar in 4 groups:
// | corresponding multiples in
// digits | the recoded representation
// -------------------------------------------------------------------------
// (0): {s_0, s_4, s_8, ..., s_100, s_104} | { 2^0, 2^20, ..., 2^500, 2^520}
// (1): {s_1, s_5, s_9, ..., s_101} | { 2^5, 2^25, ..., 2^505}
// (2): {s_2, s_6, s_10, ..., s_102} | {2^10, 2^30, ..., 2^510}
// (3): {s_3, s_7, s_11, ..., s_103} | {2^15, 2^35, ..., 2^515}
// corresponding sub-table lookup | { T0, T1, ..., T25, T26}
//
// The group (0) digits correspond precisely to the multiples of G that are
// held in the 27 precomputed sub-tables, so we may simply read the appropriate
// points from the sub-tables and sum them all up (negating if needed, i.e., if
// a digit s_i is negative, we read the point corresponding to the abs(s_i) and
// negate it before adding it to the sum).
// The remaining three groups (1), (2), and (3), correspond to the multiples
// of G from the sub-tables multiplied additionally by 2^5, 2^10, and 2^15,
// respectively. Therefore, for these groups we may read the appropriate points
// from the table, double them 5, 10, or 15 times, respectively, and add them
// to the final result.
//
// To minimize the number of required doubling operations we process the digits
// of the scalar from left to right. In other words, the algorithm is:
// 1. Read the points corresponding to the group (3) digits from the table
// and add them to an accumulator.
// 2. Double the accumulator 5 times.
// 3. Repeat steps 1. and 2. for groups (2) and (1),
// and perform step 1. for group (0).
// 4. If the scalar is even subtract G from the accumulator.
//
// Note: this function is constant-time.
static void ec_GFp_nistp521_point_mul_base(const EC_GROUP *group,
EC_JACOBIAN *r,
const EC_SCALAR *scalar) {
p521_felem res[3] = {{0}, {0}, {0}}, tmp[3] = {{0}, {0}, {0}}, ftmp;
int16_t rnaf[P521_MUL_NWINDOWS] = {0};
// Recode the scalar.
scalar_rwnaf(rnaf, P521_MUL_WSIZE, scalar, 521);
// Process the 4 groups of digits starting from group (3) down to group (0).
for (int i = 3; i >= 0; i--) {
// Double |res| 5 times in each iteration, except in the first one.
for (size_t j = 0; i != 3 && j < P521_MUL_WSIZE; j++) {
p521_point_double(res[0], res[1], res[2], res[0], res[1], res[2]);
}
// Process the digits in the current group from the most to the least
// significant one (this is a requirement to ensure that the case of point
// doubling can't happen).
// For group (3) we process digits s_103 to s_3, for group (2) s_102 to s_2,
// group (1) s_101 to s_1, and for group (0) s_104 to s_0.
const size_t start_idx = ((P521_MUL_NWINDOWS - i - 1)/4)*4 + i;
for (int j = start_idx; j >= 0; j -= 4) {
// For each digit |d| in the current group read the corresponding point
// from the table and add it to |res|. If |d| is negative, negate
// the point before adding it to |res|.
int16_t d = rnaf[j];
// is_neg = (d < 0) ? 1 : 0
int16_t is_neg = (d >> 15) & 1;
// d = abs(d)
d = (d ^ -is_neg) + is_neg;
int16_t idx = d >> 1;
// Select the point to add, in constant time.
p521_select_point_affine(tmp, idx, p521_g_pre_comp[j / 4],
P521_MUL_TABLE_SIZE);
// Negate y coordinate of the point tmp = (x, y); ftmp = -y.
p521_felem_opp(ftmp, tmp[1]);
// Conditionally select y or -y depending on the sign of the digit |d|.
p521_felem_cmovznz(tmp[1], is_neg, tmp[1], ftmp);
// Add the point to the accumulator |res|.
// Note that the points in the pre-computed table are given with affine
// coordinates. The point addition function computes a sum of two points,
// either both given in projective, or one in projective and the other one
// in affine coordinates. The |mixed| flag indicates the latter option,
// in which case we set the third coordinate of the second point to one.
p521_point_add(res[0], res[1], res[2], res[0], res[1], res[2],
1 /* mixed */, tmp[0], tmp[1], p521_felem_one);
}
}
// Conditionally subtract G if the scalar is even, in constant-time.
// First, compute |tmp| = |res| + (-G).
p521_felem_copy(tmp[0], p521_g_pre_comp[0][0][0]);
p521_felem_opp(tmp[1], p521_g_pre_comp[0][0][1]);
p521_point_add(tmp[0], tmp[1], tmp[2], res[0], res[1], res[2],
1 /* mixed */, tmp[0], tmp[1], p521_felem_one);
// Select |res| or |tmp| based on the |scalar| parity.
p521_felem_cmovznz(res[0], scalar->words[0] & 1, tmp[0], res[0]);
p521_felem_cmovznz(res[1], scalar->words[0] & 1, tmp[1], res[1]);
p521_felem_cmovznz(res[2], scalar->words[0] & 1, tmp[2], res[2]);
// Copy the result to the output.
p521_to_generic(&r->X, res[0]);
p521_to_generic(&r->Y, res[1]);
p521_to_generic(&r->Z, res[2]);
}
// Computes [g_scalar]G + [p_scalar]P, where G is the base point of the P-521
// curve, and P is the given point |p|.
//
// Both scalar products are computed by the same "textbook" wNAF method,
// with w = 5 for g_scalar and w = 5 for p_scalar.
// For the base point G product we use the first sub-table of the precomputed
// table |p521_g_pre_comp| from |p521_table.h| file, while for P we generate
// |p_pre_comp| table on-the-fly. The tables hold the first 16 odd multiples
// of G or P:
// g_pre_comp = {[1]G, [3]G, ..., [31]G},
// p_pre_comp = {[1]P, [3]P, ..., [31]P}.
// Computing the negation of a point P = (x, y) is relatively easy:
// -P = (x, -y).
// So we may assume that we also have the negatives of the points in the tables.
//
// The 521-bit scalars are recoded by the textbook wNAF method to 522 digits,
// where a digit is either a zero or an odd integer in [-31, 31]. The method
// guarantees that each non-zero digit is followed by at least four
// zeroes.
//
// The result [g_scalar]G + [p_scalar]P is computed by the following algorithm:
// 1. Initialize the accumulator with the point-at-infinity.
// 2. For i starting from 521 down to 0:
// 3. Double the accumulator (doubling can be skipped while the
// accumulator is equal to the point-at-infinity).
// 4. Read from |p_pre_comp| the point corresponding to the i-th digit of
// p_scalar, negate it if the digit is negative, and add it to the
// accumulator.
// 5. Read from |g_pre_comp| the point corresponding to the i-th digit of
// g_scalar, negate it if the digit is negative, and add it to the
// accumulator.
//
// Note: this function is NOT constant-time.
static void ec_GFp_nistp521_point_mul_public(const EC_GROUP *group,
EC_JACOBIAN *r,
const EC_SCALAR *g_scalar,
const EC_JACOBIAN *p,
const EC_SCALAR *p_scalar) {
p521_felem res[3] = {{0}, {0}, {0}}, two_p[3] = {{0}, {0}, {0}}, ftmp;
// Table of multiples of P: [2i + 1]P for i in [0, 15].
p521_felem p_pre_comp[P521_MUL_PUB_TABLE_SIZE][3];
// Set the first point in the table to P.
p521_from_generic(p_pre_comp[0][0], &p->X);
p521_from_generic(p_pre_comp[0][1], &p->Y);
p521_from_generic(p_pre_comp[0][2], &p->Z);
// Compute two_p = [2]P.
p521_point_double(two_p[0], two_p[1], two_p[2],
p_pre_comp[0][0], p_pre_comp[0][1], p_pre_comp[0][2]);
// Generate the remaining 15 multiples of P.
for (size_t i = 1; i < P521_MUL_PUB_TABLE_SIZE; i++) {
p521_point_add(p_pre_comp[i][0], p_pre_comp[i][1], p_pre_comp[i][2],
two_p[0], two_p[1], two_p[2], 0 /* both Jacobian */,
p_pre_comp[i - 1][0],
p_pre_comp[i - 1][1],
p_pre_comp[i - 1][2]);
}
// Recode the scalars.
int8_t p_wnaf[522] = {0}, g_wnaf[522] = {0};
ec_compute_wNAF(group, p_wnaf, p_scalar, 521, P521_MUL_PUB_WSIZE);
ec_compute_wNAF(group, g_wnaf, g_scalar, 521, P521_MUL_WSIZE);
// In the beginning res is set to point-at-infinity, so we set the flag.
int16_t res_is_inf = 1;
int16_t d, is_neg, idx;
for (int i = 521; i >= 0; i--) {
// If |res| is point-at-infinity there is no point in doubling so skip it.
if (!res_is_inf) {
p521_point_double(res[0], res[1], res[2], res[0], res[1], res[2]);
}
// Process the p_scalar digit.
d = p_wnaf[i];
if (d != 0) {
is_neg = d < 0 ? 1 : 0;
idx = (is_neg) ? (-d - 1) >> 1 : (d - 1) >> 1;
if (res_is_inf) {
// If |res| is point-at-infinity there is no need to add the new point,
// we can simply copy it.
p521_felem_copy(res[0], p_pre_comp[idx][0]);
p521_felem_copy(res[1], p_pre_comp[idx][1]);
p521_felem_copy(res[2], p_pre_comp[idx][2]);
res_is_inf = 0;
} else {
// Otherwise, add to the accumulator either the point at position idx
// in the table or its negation.
if (is_neg) {
p521_felem_opp(ftmp, p_pre_comp[idx][1]);
} else {
p521_felem_copy(ftmp, p_pre_comp[idx][1]);
}
p521_point_add(res[0], res[1], res[2],
res[0], res[1], res[2],
0 /* both Jacobian */,
p_pre_comp[idx][0], ftmp, p_pre_comp[idx][2]);
}
}
// Process the g_scalar digit.
d = g_wnaf[i];
if (d != 0) {
is_neg = d < 0 ? 1 : 0;
idx = (is_neg) ? (-d - 1) >> 1 : (d - 1) >> 1;
if (res_is_inf) {
// If |res| is point-at-infinity there is no need to add the new point,
// we can simply copy it.
p521_felem_copy(res[0], p521_g_pre_comp[0][idx][0]);
p521_felem_copy(res[1], p521_g_pre_comp[0][idx][1]);
p521_felem_copy(res[2], p521_felem_one);
res_is_inf = 0;
} else {
// Otherwise, add to the accumulator either the point at position idx
// in the table or its negation.
if (is_neg) {
p521_felem_opp(ftmp, p521_g_pre_comp[0][idx][1]);
} else {
p521_felem_copy(ftmp, p521_g_pre_comp[0][idx][1]);
}
// Add the point to the accumulator |res|.
// Note that the points in the pre-computed table are given with affine
// coordinates. The point addition function computes a sum of two points,
// either both given in projective, or one in projective and one in
// affine coordinates. The |mixed| flag indicates the latter option,
// in which case we set the third coordinate of the second point to one.
p521_point_add(res[0], res[1], res[2],
res[0], res[1], res[2],
1 /* mixed */,
p521_g_pre_comp[0][idx][0], ftmp, p521_felem_one);
}
}
}
// Copy the result to the output.
p521_to_generic(&r->X, res[0]);
p521_to_generic(&r->Y, res[1]);
p521_to_generic(&r->Z, res[2]);
}
static void ec_GFp_nistp521_felem_mul(const EC_GROUP *group, EC_FELEM *r,
const EC_FELEM *a, const EC_FELEM *b) {
p521_felem felem1, felem2, felem3;
p521_from_generic(felem1, a);
p521_from_generic(felem2, b);
p521_felem_mul(felem3, felem1, felem2);
p521_to_generic(r, felem3);
}
static void ec_GFp_nistp521_felem_sqr(const EC_GROUP *group, EC_FELEM *r,
const EC_FELEM *a) {
p521_felem felem1, felem2;
p521_from_generic(felem1, a);
p521_felem_sqr(felem2, felem1);
p521_to_generic(r, felem2);
}
DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistp521_method) {
out->point_get_affine_coordinates =
ec_GFp_nistp521_point_get_affine_coordinates;
out->add = ec_GFp_nistp521_add;
out->dbl = ec_GFp_nistp521_dbl;
out->mul = ec_GFp_nistp521_point_mul;
out->mul_base = ec_GFp_nistp521_point_mul_base;
out->mul_public = ec_GFp_nistp521_point_mul_public;
out->felem_mul = ec_GFp_nistp521_felem_mul;
out->felem_sqr = ec_GFp_nistp521_felem_sqr;
out->felem_to_bytes = ec_GFp_simple_felem_to_bytes;
out->felem_from_bytes = ec_GFp_simple_felem_from_bytes;
out->scalar_inv0_montgomery = ec_simple_scalar_inv0_montgomery;
out->scalar_to_montgomery_inv_vartime =
ec_simple_scalar_to_montgomery_inv_vartime;
out->cmp_x_coordinate = ec_GFp_simple_cmp_x_coordinate;
}
// ----------------------------------------------------------------------------
// Analysis of the doubling case occurrence in the Joye-Tunstall recoding:
// see the analysis at the bottom of the |p384.c| file.
#endif // !defined(OPENSSL_SMALL)