-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathag_model.py
243 lines (217 loc) · 7.95 KB
/
ag_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import copy
import os
import sagemaker
from sagemaker import fw_utils, image_uris, vpc_utils
from sagemaker.estimator import Estimator
from sagemaker.model import DIR_PARAM_NAME, SCRIPT_PARAM_NAME, Model
from sagemaker.predictor import Predictor
from sagemaker.serializers import CSVSerializer, NumpySerializer
from deserializers import PandasDeserializer
from sagemaker_utils import retrieve_latest_framework_version
from serializers import MultiModalSerializer, ParquetSerializer
# Estimator documentation: https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#estimators
class AutoGluonSagemakerEstimator(Estimator):
def __init__(
self,
entry_point,
region,
framework_version,
py_version,
instance_type,
source_dir=None,
hyperparameters=None,
custom_image_uri=None,
**kwargs,
):
self.framework_version = framework_version
self.py_version = py_version
self.image_uri = custom_image_uri
if self.image_uri is None:
self.image_uri = image_uris.retrieve(
"autogluon",
region=region,
version=framework_version,
py_version=py_version,
image_scope="training",
instance_type=instance_type,
)
super().__init__(
entry_point=entry_point,
source_dir=source_dir,
hyperparameters=hyperparameters,
instance_type=instance_type,
image_uri=self.image_uri,
**kwargs,
)
def _configure_distribution(self, distributions):
return
def create_model(
self,
region,
framework_version,
py_version,
instance_type,
source_dir=None,
entry_point=None,
role=None,
image_uri=None,
predictor_cls=None,
vpc_config_override=vpc_utils.VPC_CONFIG_DEFAULT,
repack=False,
**kwargs,
):
image_uri = image_uris.retrieve(
"autogluon",
region=region,
version=framework_version,
py_version=py_version,
image_scope="inference",
instance_type=instance_type,
)
if predictor_cls is None:
def predict_wrapper(endpoint, session):
return Predictor(endpoint, session)
predictor_cls = predict_wrapper
role = role or self.role
if "enable_network_isolation" not in kwargs:
kwargs["enable_network_isolation"] = self.enable_network_isolation()
if repack:
model_cls = AutoGluonRepackInferenceModel
else:
model_cls = AutoGluonNonRepackInferenceModel
return model_cls(
image_uri=image_uri,
source_dir=source_dir,
entry_point=entry_point,
model_data=self.model_data,
role=role,
vpc_config=self.get_vpc_config(vpc_config_override),
sagemaker_session=self.sagemaker_session,
predictor_cls=predictor_cls,
**kwargs,
)
@classmethod
def _prepare_init_params_from_job_description(
cls, job_details, model_channel_name=None
):
init_params = super()._prepare_init_params_from_job_description(
job_details, model_channel_name=model_channel_name
)
# This two parameters will not be used, but is required to reattach the job
init_params["region"] = "us-east-1"
init_params["framework_version"] = retrieve_latest_framework_version()
return init_params
# Documentation for Model: https://sagemaker.readthedocs.io/en/stable/api/inference/model.html#model
class AutoGluonSagemakerInferenceModel(Model):
def __init__(
self,
model_data,
role,
entry_point,
region,
framework_version,
py_version,
instance_type,
custom_image_uri=None,
**kwargs,
):
image_uri = custom_image_uri
if image_uri is None:
image_uri = image_uris.retrieve(
"autogluon",
region=region,
version=framework_version,
py_version=py_version,
image_scope="inference",
instance_type=instance_type,
)
# setting PYTHONUNBUFFERED to disable output buffering for endpoints logging
super().__init__(
model_data=model_data,
role=role,
entry_point=entry_point,
image_uri=image_uri,
env={"PYTHONUNBUFFERED": "1"},
**kwargs,
)
def transformer(
self,
instance_count,
instance_type,
strategy="MultiRecord",
# Maximum size of the payload in a single HTTP request to the container in MB. Will split into multiple batches if a request is more than max_payload
max_payload=6,
max_concurrent_transforms=1, # The maximum number of HTTP requests to be made to each individual transform container at one time.
accept="application/json",
assemble_with="Line",
**kwargs,
):
return super().transformer(
instance_count=instance_count,
instance_type=instance_type,
strategy=strategy,
max_payload=max_payload,
max_concurrent_transforms=max_concurrent_transforms,
accept=accept,
assemble_with=assemble_with,
**kwargs,
)
class AutoGluonRepackInferenceModel(AutoGluonSagemakerInferenceModel):
"""
Custom implementation to force repack of inference code into model artifacts
"""
def prepare_container_def(
self,
instance_type=None,
accelerator_type=None,
serverless_inference_config=None,
): # pylint: disable=unused-argument
deploy_key_prefix = fw_utils.model_code_key_prefix(
self.key_prefix, self.name, self.image_uri
)
deploy_env = copy.deepcopy(self.env)
self._upload_code(deploy_key_prefix, repack=True)
deploy_env.update(self._script_mode_env_vars())
return sagemaker.container_def(
self.image_uri,
self.repacked_model_data or self.model_data,
deploy_env,
image_config=self.image_config,
)
class AutoGluonNonRepackInferenceModel(AutoGluonSagemakerInferenceModel):
"""
Custom implementation to force no repack of inference code into model artifacts.
This requires inference code already present in the trained artifacts, which is created during CloudPredictor training.
"""
def prepare_container_def(
self,
instance_type=None,
accelerator_type=None,
serverless_inference_config=None,
): # pylint: disable=unused-argument
deploy_env = copy.deepcopy(self.env)
deploy_env.update(self._script_mode_env_vars())
deploy_env[SCRIPT_PARAM_NAME.upper()] = os.path.basename(
deploy_env[SCRIPT_PARAM_NAME.upper()]
)
deploy_env[DIR_PARAM_NAME.upper()] = "/opt/ml/model/code"
return sagemaker.container_def(
self.image_uri,
self.model_data,
deploy_env,
image_config=self.image_config,
)
# Predictor documentation: https://sagemaker.readthedocs.io/en/stable/api/inference/predictors.html
class AutoGluonRealtimePredictor(Predictor):
def __init__(self, *args, **kwargs):
super().__init__(
*args,
serializer=ParquetSerializer(),
deserializer=PandasDeserializer(),
**kwargs,
)
# Predictor documentation: https://sagemaker.readthedocs.io/en/stable/api/inference/predictors.html
# SageMaker can only take in csv format for batch transformation because files need to be easily splitable to be batch processed.
class AutoGluonBatchPredictor(Predictor):
def __init__(self, *args, **kwargs):
super().__init__(*args, serializer=CSVSerializer(), **kwargs)