|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [ |
| 8 | + { |
| 9 | + "name": "stderr", |
| 10 | + "output_type": "stream", |
| 11 | + "text": [ |
| 12 | + "/data2/haiyang/anaconda3/envs/QHBench/lib/python3.8/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", |
| 13 | + " from .autonotebook import tqdm as notebook_tqdm\n" |
| 14 | + ] |
| 15 | + } |
| 16 | + ], |
| 17 | + "source": [ |
| 18 | + "import os\n", |
| 19 | + "import sys\n", |
| 20 | + "sys.path.insert(0, os.path.dirname(os.getcwd()))\n", |
| 21 | + "\n", |
| 22 | + "import torch\n", |
| 23 | + "from datasets import QH9Stable, QH9Dynamic" |
| 24 | + ] |
| 25 | + }, |
| 26 | + { |
| 27 | + "cell_type": "markdown", |
| 28 | + "metadata": {}, |
| 29 | + "source": [ |
| 30 | + "### Here is the statistics of the dataset" |
| 31 | + ] |
| 32 | + }, |
| 33 | + { |
| 34 | + "cell_type": "code", |
| 35 | + "execution_count": 2, |
| 36 | + "metadata": {}, |
| 37 | + "outputs": [], |
| 38 | + "source": [ |
| 39 | + "def get_hamiltonian_size(molecule_atoms):\n", |
| 40 | + " atom_mask_periodic_row1 = molecule_atoms <= 2\n", |
| 41 | + " atom_mask_periodic_row2 = molecule_atoms > 2\n", |
| 42 | + " num_orbitals = atom_mask_periodic_row2.sum() * 14 + (atom_mask_periodic_row1.sum()) * 2\n", |
| 43 | + " return num_orbitals\n", |
| 44 | + "\n", |
| 45 | + "\n", |
| 46 | + "def get_dataset_statistic(ori_dataset):\n", |
| 47 | + " statistic_info = {}\n", |
| 48 | + " dataset_split_name = ['train', 'val', 'test']\n", |
| 49 | + " for split_name in dataset_split_name:\n", |
| 50 | + " statistic_info[split_name] = {}\n", |
| 51 | + " dataset = ori_dataset[getattr(ori_dataset, f'{split_name}_mask')]\n", |
| 52 | + "\n", |
| 53 | + " all_num_nodes = [data.num_nodes for data in dataset]\n", |
| 54 | + " all_num_nodes = torch.tensor(all_num_nodes).float()\n", |
| 55 | + " num_node_mean, num_node_min, num_node_max, num_node_median = \\\n", |
| 56 | + " all_num_nodes.mean(), all_num_nodes.min(), all_num_nodes.max(), all_num_nodes.median()\n", |
| 57 | + "\n", |
| 58 | + " all_electronics = torch.tensor([data.atoms.sum() for data in dataset]).float()\n", |
| 59 | + " num_electronics_mean, num_electronics_min, num_electronics_max, num_electronics_median = \\\n", |
| 60 | + " all_electronics.mean(), all_electronics.min(), all_electronics.max(), all_electronics.median()\n", |
| 61 | + "\n", |
| 62 | + " all_hamiltonian_matrix_size = [get_hamiltonian_size(data.atoms) for data in dataset]\n", |
| 63 | + " all_hamiltonian_matrix_size = torch.tensor(all_hamiltonian_matrix_size).float()\n", |
| 64 | + " hamiltonian_size_mean, hamiltonian_size_min, hamiltonian_size_max, hamiltonian_size_median = \\\n", |
| 65 | + " all_hamiltonian_matrix_size.mean(), all_hamiltonian_matrix_size.min(), \\\n", |
| 66 | + " all_hamiltonian_matrix_size.max(), all_hamiltonian_matrix_size.median()\n", |
| 67 | + "\n", |
| 68 | + " statistic_info[split_name]['num_node_mean'], statistic_info[split_name]['num_node_min'], \\\n", |
| 69 | + " statistic_info[split_name]['num_node_max'], statistic_info[split_name]['num_node_median'] = \\\n", |
| 70 | + " num_node_mean.item(), num_node_min.item(), num_node_max.item(), num_node_median.item()\n", |
| 71 | + "\n", |
| 72 | + " statistic_info[split_name]['num_electronics_mean'], statistic_info[split_name]['num_electronics_min'], \\\n", |
| 73 | + " statistic_info[split_name]['num_electronics_max'], statistic_info[split_name]['num_electronics_median'] = \\\n", |
| 74 | + " num_electronics_mean.item(), num_electronics_min.item(), num_electronics_max.item(), num_electronics_median.item()\n", |
| 75 | + "\n", |
| 76 | + " statistic_info[split_name]['hamiltonian_size_mean'], statistic_info[split_name]['hamiltonian_size_min'], \\\n", |
| 77 | + " statistic_info[split_name]['hamiltonian_size_max'], statistic_info[split_name]['hamiltonian_size_median'], \\\n", |
| 78 | + " = hamiltonian_size_mean.item(), hamiltonian_size_min.item(), hamiltonian_size_max.item(), hamiltonian_size_median.item()\n", |
| 79 | + "\n", |
| 80 | + " return statistic_info" |
| 81 | + ] |
| 82 | + }, |
| 83 | + { |
| 84 | + "cell_type": "code", |
| 85 | + "execution_count": 4, |
| 86 | + "metadata": {}, |
| 87 | + "outputs": [], |
| 88 | + "source": [ |
| 89 | + "dataset_stable_random = QH9Stable(root=os.path.join(os.sep.join(os.getcwd().split(os.sep)[:-1]), 'datasets'), split='random')\n", |
| 90 | + "dataset_stable_random_statistic= get_dataset_statistic(dataset_stable_random)" |
| 91 | + ] |
| 92 | + }, |
| 93 | + { |
| 94 | + "cell_type": "code", |
| 95 | + "execution_count": 3, |
| 96 | + "metadata": {}, |
| 97 | + "outputs": [ |
| 98 | + { |
| 99 | + "name": "stderr", |
| 100 | + "output_type": "stream", |
| 101 | + "text": [ |
| 102 | + "Processing...\n", |
| 103 | + " 0%| | 113M/30.5G [00:19<22:44, 22.3MB/s]" |
| 104 | + ] |
| 105 | + } |
| 106 | + ], |
| 107 | + "source": [ |
| 108 | + "dataset_stable_ood = QH9Stable(root=os.path.join(os.sep.join(os.getcwd().split(os.sep)[:-1]), 'datasets'), split='size_ood')\n", |
| 109 | + "dataset_stable_ood_statistic = get_dataset_statistic(dataset_stable_ood)" |
| 110 | + ] |
| 111 | + }, |
| 112 | + { |
| 113 | + "cell_type": "code", |
| 114 | + "execution_count": null, |
| 115 | + "metadata": {}, |
| 116 | + "outputs": [], |
| 117 | + "source": [ |
| 118 | + "dataset_dynamic_geo_100k = QH9Dynamic(root=os.path.join(os.sep.join(os.getcwd().split(os.sep)[:-1]), 'datasets'), version='100k', split='geometry')\n", |
| 119 | + "dataset_dynamic_geo_100k_statistic = get_dataset_statistic(dataset_dynamic_geo_100k)" |
| 120 | + ] |
| 121 | + }, |
| 122 | + { |
| 123 | + "cell_type": "code", |
| 124 | + "execution_count": null, |
| 125 | + "metadata": {}, |
| 126 | + "outputs": [], |
| 127 | + "source": [ |
| 128 | + "dataset_dynamic_mol_100k = QH9Dynamic(root=os.path.join(os.sep.join(os.getcwd().split(os.sep)[:-1]), 'datasets'), version='100k', split='mol')\n", |
| 129 | + "dataset_dynamic_mol_100k_statistic = get_dataset_statistic(dataset_dynamic_mol_100k)" |
| 130 | + ] |
| 131 | + }, |
| 132 | + { |
| 133 | + "cell_type": "code", |
| 134 | + "execution_count": 3, |
| 135 | + "metadata": {}, |
| 136 | + "outputs": [ |
| 137 | + { |
| 138 | + "data": { |
| 139 | + "text/plain": [ |
| 140 | + "{'train': {'num_node_mean': 18.03936004638672,\n", |
| 141 | + " 'num_node_min': 7.0,\n", |
| 142 | + " 'num_node_max': 27.0,\n", |
| 143 | + " 'num_node_median': 18.0,\n", |
| 144 | + " 'num_electronics_mean': 65.87992095947266,\n", |
| 145 | + " 'num_electronics_min': 24.0,\n", |
| 146 | + " 'num_electronics_max': 74.0,\n", |
| 147 | + " 'num_electronics_median': 66.0,\n", |
| 148 | + " 'hamiltonian_size_mean': 141.5890655517578,\n", |
| 149 | + " 'hamiltonian_size_min': 54.0,\n", |
| 150 | + " 'hamiltonian_size_max': 162.0,\n", |
| 151 | + " 'hamiltonian_size_median': 144.0},\n", |
| 152 | + " 'val': {'num_node_mean': 18.03936004638672,\n", |
| 153 | + " 'num_node_min': 7.0,\n", |
| 154 | + " 'num_node_max': 27.0,\n", |
| 155 | + " 'num_node_median': 18.0,\n", |
| 156 | + " 'num_electronics_mean': 65.87992095947266,\n", |
| 157 | + " 'num_electronics_min': 24.0,\n", |
| 158 | + " 'num_electronics_max': 74.0,\n", |
| 159 | + " 'num_electronics_median': 66.0,\n", |
| 160 | + " 'hamiltonian_size_mean': 141.5890655517578,\n", |
| 161 | + " 'hamiltonian_size_min': 54.0,\n", |
| 162 | + " 'hamiltonian_size_max': 162.0,\n", |
| 163 | + " 'hamiltonian_size_median': 144.0},\n", |
| 164 | + " 'test': {'num_node_mean': 18.03936004638672,\n", |
| 165 | + " 'num_node_min': 7.0,\n", |
| 166 | + " 'num_node_max': 27.0,\n", |
| 167 | + " 'num_node_median': 18.0,\n", |
| 168 | + " 'num_electronics_mean': 65.87992095947266,\n", |
| 169 | + " 'num_electronics_min': 24.0,\n", |
| 170 | + " 'num_electronics_max': 74.0,\n", |
| 171 | + " 'num_electronics_median': 66.0,\n", |
| 172 | + " 'hamiltonian_size_mean': 141.5890655517578,\n", |
| 173 | + " 'hamiltonian_size_min': 54.0,\n", |
| 174 | + " 'hamiltonian_size_max': 162.0,\n", |
| 175 | + " 'hamiltonian_size_median': 144.0}}" |
| 176 | + ] |
| 177 | + }, |
| 178 | + "execution_count": 3, |
| 179 | + "metadata": {}, |
| 180 | + "output_type": "execute_result" |
| 181 | + } |
| 182 | + ], |
| 183 | + "source": [ |
| 184 | + "dataset_dynamic_geo_300k = QH9Dynamic(root=os.path.join(os.sep.join(os.getcwd().split(os.sep)[:-1]), 'datasets'), version='300k', split='geometry')\n", |
| 185 | + "dataset_dynamic_geo_300k_statistic = get_dataset_statistic(dataset_dynamic_geo_300k)\n", |
| 186 | + "dataset_dynamic_geo_300k_statistic" |
| 187 | + ] |
| 188 | + }, |
| 189 | + { |
| 190 | + "cell_type": "code", |
| 191 | + "execution_count": 3, |
| 192 | + "metadata": {}, |
| 193 | + "outputs": [ |
| 194 | + { |
| 195 | + "data": { |
| 196 | + "text/plain": [ |
| 197 | + "{'train': {'num_node_mean': 18.015846252441406,\n", |
| 198 | + " 'num_node_min': 7.0,\n", |
| 199 | + " 'num_node_max': 27.0,\n", |
| 200 | + " 'num_node_median': 18.0,\n", |
| 201 | + " 'num_electronics_mean': 65.91242980957031,\n", |
| 202 | + " 'num_electronics_min': 24.0,\n", |
| 203 | + " 'num_electronics_max': 74.0,\n", |
| 204 | + " 'num_electronics_median': 66.0,\n", |
| 205 | + " 'hamiltonian_size_mean': 141.58465576171875,\n", |
| 206 | + " 'hamiltonian_size_min': 54.0,\n", |
| 207 | + " 'hamiltonian_size_max': 162.0,\n", |
| 208 | + " 'hamiltonian_size_median': 144.0},\n", |
| 209 | + " 'val': {'num_node_mean': 18.153846740722656,\n", |
| 210 | + " 'num_node_min': 10.0,\n", |
| 211 | + " 'num_node_max': 25.0,\n", |
| 212 | + " 'num_node_median': 18.0,\n", |
| 213 | + " 'num_electronics_mean': 65.71237182617188,\n", |
| 214 | + " 'num_electronics_min': 34.0,\n", |
| 215 | + " 'num_electronics_max': 74.0,\n", |
| 216 | + " 'num_electronics_median': 66.0,\n", |
| 217 | + " 'hamiltonian_size_mean': 141.17726135253906,\n", |
| 218 | + " 'hamiltonian_size_min': 72.0,\n", |
| 219 | + " 'hamiltonian_size_max': 158.0,\n", |
| 220 | + " 'hamiltonian_size_median': 144.0},\n", |
| 221 | + " 'test': {'num_node_mean': 18.112957000732422,\n", |
| 222 | + " 'num_node_min': 9.0,\n", |
| 223 | + " 'num_node_max': 25.0,\n", |
| 224 | + " 'num_node_median': 18.0,\n", |
| 225 | + " 'num_electronics_mean': 65.7873764038086,\n", |
| 226 | + " 'num_electronics_min': 50.0,\n", |
| 227 | + " 'num_electronics_max': 72.0,\n", |
| 228 | + " 'num_electronics_median': 66.0,\n", |
| 229 | + " 'hamiltonian_size_mean': 142.03321838378906,\n", |
| 230 | + " 'hamiltonian_size_min': 102.0,\n", |
| 231 | + " 'hamiltonian_size_max': 158.0,\n", |
| 232 | + " 'hamiltonian_size_median': 144.0}}" |
| 233 | + ] |
| 234 | + }, |
| 235 | + "execution_count": 3, |
| 236 | + "metadata": {}, |
| 237 | + "output_type": "execute_result" |
| 238 | + } |
| 239 | + ], |
| 240 | + "source": [ |
| 241 | + "dataset_dynamic_mol_300k = QH9Dynamic(root=os.path.join(os.sep.join(os.getcwd().split(os.sep)[:-1]), 'datasets'), version='300k', split='mol')\n", |
| 242 | + "dataset_dynamic_mol_300k_statistic = get_dataset_statistic(dataset_dynamic_mol_300k)\n", |
| 243 | + "dataset_dynamic_mol_300k_statistic" |
| 244 | + ] |
| 245 | + }, |
| 246 | + { |
| 247 | + "cell_type": "code", |
| 248 | + "execution_count": 9, |
| 249 | + "metadata": {}, |
| 250 | + "outputs": [ |
| 251 | + { |
| 252 | + "data": { |
| 253 | + "text/plain": [ |
| 254 | + "{'train': {'num_node_mean': 18.023332595825195,\n", |
| 255 | + " 'num_node_min': 3.0,\n", |
| 256 | + " 'num_node_max': 29.0,\n", |
| 257 | + " 'num_node_median': 18.0,\n", |
| 258 | + " 'num_electronics_mean': 65.89612579345703,\n", |
| 259 | + " 'num_electronics_min': 10.0,\n", |
| 260 | + " 'num_electronics_max': 74.0,\n", |
| 261 | + " 'num_electronics_median': 66.0,\n", |
| 262 | + " 'hamiltonian_size_mean': 141.5970001220703,\n", |
| 263 | + " 'hamiltonian_size_min': 18.0,\n", |
| 264 | + " 'hamiltonian_size_max': 166.0,\n", |
| 265 | + " 'hamiltonian_size_median': 144.0},\n", |
| 266 | + " 'val': {'num_node_mean': 18.026752471923828,\n", |
| 267 | + " 'num_node_min': 6.0,\n", |
| 268 | + " 'num_node_max': 29.0,\n", |
| 269 | + " 'num_node_median': 18.0,\n", |
| 270 | + " 'num_electronics_mean': 65.90185546875,\n", |
| 271 | + " 'num_electronics_min': 18.0,\n", |
| 272 | + " 'num_electronics_max': 74.0,\n", |
| 273 | + " 'num_electronics_median': 66.0,\n", |
| 274 | + " 'hamiltonian_size_mean': 141.6219482421875,\n", |
| 275 | + " 'hamiltonian_size_min': 36.0,\n", |
| 276 | + " 'hamiltonian_size_max': 166.0,\n", |
| 277 | + " 'hamiltonian_size_median': 144.0},\n", |
| 278 | + " 'test': {'num_node_mean': 18.035158157348633,\n", |
| 279 | + " 'num_node_min': 4.0,\n", |
| 280 | + " 'num_node_max': 29.0,\n", |
| 281 | + " 'num_node_median': 18.0,\n", |
| 282 | + " 'num_electronics_mean': 65.8647232055664,\n", |
| 283 | + " 'num_electronics_min': 24.0,\n", |
| 284 | + " 'num_electronics_max': 74.0,\n", |
| 285 | + " 'num_electronics_median': 66.0,\n", |
| 286 | + " 'hamiltonian_size_mean': 141.55824279785156,\n", |
| 287 | + " 'hamiltonian_size_min': 48.0,\n", |
| 288 | + " 'hamiltonian_size_max': 166.0,\n", |
| 289 | + " 'hamiltonian_size_median': 144.0}}" |
| 290 | + ] |
| 291 | + }, |
| 292 | + "execution_count": 9, |
| 293 | + "metadata": {}, |
| 294 | + "output_type": "execute_result" |
| 295 | + } |
| 296 | + ], |
| 297 | + "source": [ |
| 298 | + "dataset_stable_random_statistic" |
| 299 | + ] |
| 300 | + }, |
| 301 | + { |
| 302 | + "cell_type": "code", |
| 303 | + "execution_count": 3, |
| 304 | + "metadata": {}, |
| 305 | + "outputs": [], |
| 306 | + "source": [ |
| 307 | + "dataset_stable_ood = QH9Stable(root=os.path.join(os.sep.join(os.getcwd().split(os.sep)[:-1]), 'datasets'), split='size_ood')\n", |
| 308 | + "dataset_stable_ood_statistic = get_dataset_statistic(dataset_stable_ood)\n", |
| 309 | + "dataset_stable_ood_statistic" |
| 310 | + ] |
| 311 | + }, |
| 312 | + { |
| 313 | + "cell_type": "code", |
| 314 | + "execution_count": 16, |
| 315 | + "metadata": {}, |
| 316 | + "outputs": [ |
| 317 | + { |
| 318 | + "data": { |
| 319 | + "text/plain": [ |
| 320 | + "array([], dtype=int64)" |
| 321 | + ] |
| 322 | + }, |
| 323 | + "execution_count": 16, |
| 324 | + "metadata": {}, |
| 325 | + "output_type": "execute_result" |
| 326 | + } |
| 327 | + ], |
| 328 | + "source": [ |
| 329 | + "dataset_stable_ood.train_mask" |
| 330 | + ] |
| 331 | + }, |
| 332 | + { |
| 333 | + "cell_type": "code", |
| 334 | + "execution_count": null, |
| 335 | + "metadata": {}, |
| 336 | + "outputs": [], |
| 337 | + "source": [] |
| 338 | + } |
| 339 | + ], |
| 340 | + "metadata": { |
| 341 | + "kernelspec": { |
| 342 | + "display_name": "QHBench", |
| 343 | + "language": "python", |
| 344 | + "name": "python3" |
| 345 | + }, |
| 346 | + "language_info": { |
| 347 | + "codemirror_mode": { |
| 348 | + "name": "ipython", |
| 349 | + "version": 3 |
| 350 | + }, |
| 351 | + "file_extension": ".py", |
| 352 | + "mimetype": "text/x-python", |
| 353 | + "name": "python", |
| 354 | + "nbconvert_exporter": "python", |
| 355 | + "pygments_lexer": "ipython3", |
| 356 | + "version": "3.8.18" |
| 357 | + } |
| 358 | + }, |
| 359 | + "nbformat": 4, |
| 360 | + "nbformat_minor": 2 |
| 361 | +} |
0 commit comments