-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
268 lines (217 loc) · 9.61 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import torch
import torch.nn as nn
from torch.nn import functional as nnf
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.distributed as dist
import torch.optim as optim
import torch.multiprocessing as mp
from enum import Enum
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup
from tqdm import tqdm
import os
import pickle
import sys
import argparse
import json
from typing import Tuple, Optional, Union
import sys
import clip
import ftfy
import regex as re
import html
import random
import tempfile
import tokenizers
import json
import random
import math
class ClipCocoDataset(Dataset):
def __len__(self) -> int:
return len(self.captions_tokens)
def pad_tokens(self, item: int):
tokens = self.captions_tokens[item]
padding = self.max_seq_len - tokens.shape[0]
if padding > 0:
tokens = torch.cat((tokens, torch.zeros(padding, dtype=torch.int64)))
elif padding < 0:
tokens = tokens[:self.max_seq_len]
return tokens
def __getitem__(self, item: int) -> Tuple[torch.Tensor, ...]:
# tokens = self.captions_tokens[item]
clip_tokens = self.pad_tokens(item)
clip_tokens_77 = self.captions_tokens[item]
return clip_tokens,clip_tokens_77
def __init__(self, data_path: str, prefix_length: int, gpt2_type: str = "gpt2",
normalize_prefix=False):
self.clip_tokenizer = clip.tokenize
self.prefix_length = 10
self.max_seq_len = 20
with open(data_path, 'r') as f:
self.captions = json.load(f)
random.shuffle(self.captions)
self.captions_tokens = []
for caption in self.captions[:]:
try:
self.captions_tokens.append(torch.tensor(self.clip_tokenizer(caption)[0], dtype=torch.int64))
except:
continue
print(len(self.captions_tokens))
class MLP(nn.Module):
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.model(x)
def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh):
super(MLP, self).__init__()
layers = []
for i in range(len(sizes) - 1):
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias))
if i < len(sizes) - 2:
layers.append(act())
self.model = nn.Sequential(*layers)
class DeCap(nn.Module):
def __init__(self,prefix_size: int = 512):
super(DeCap, self).__init__()
# decoder: 4 layers transformer with 4 attention heads
# the decoder is not pretrained
with open('./decoder_config.pkl','rb') as f:
config = pickle.load(f)
self.decoder = GPT2LMHeadModel(config)
self.embedding_size = self.decoder.transformer.wte.weight.shape[1]
self.clip_project = MLP((prefix_size,self.embedding_size))
def forward(self, clip_features,gpt_tokens):
embedding_text = self.decoder.transformer.wte(gpt_tokens)
embedding_clip = self.clip_project(clip_features)
embedding_clip = embedding_clip.reshape(-1,1,self.embedding_size)
embedding_cat = torch.cat([embedding_clip,embedding_text],dim=1)
out = self.decoder(inputs_embeds=embedding_cat)
return out
def save_config(args: argparse.Namespace):
config = {}
for key, item in args._get_kwargs():
config[key] = item
out_path = os.path.join(args.out_dir, f"{args.prefix}.json")
with open(out_path, 'w') as outfile:
json.dump(config, outfile)
def load_model(config_path: str, epoch_or_latest: Union[str, int] = '_latest'):
with open(config_path) as f:
config = json.load(f)
parser = argparse.ArgumentParser()
parser.set_defaults(**config)
args = parser.parse_args()
if type(epoch_or_latest) is int:
epoch_or_latest = f"-{epoch_or_latest:03d}"
model_path = os.path.join(args.out_dir, f"{args.prefix}{epoch_or_latest}.pt")
if args.only_prefix:
model = ClipCaptionPrefix(args.prefix_length)
else:
model = ClipCaptionModel(args.prefix_length)
if os.path.isfile(model_path):
print(f"loading model from {model_path}")
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
else:
print(f"{model_path} is not exist")
return model, parser
def train_decoder(dataset: ClipCocoDataset, args,
lr: float = 1e-5, warmup_steps: int = 1000, output_dir: str = ".", output_prefix: str = ""):
# device = torch.device('cuda:1')
batch_size = args.bs
epochs = args.epochs
if not os.path.exists(output_dir):
os.makedirs(output_dir)
args.is_master = args.local_rank == 0
# set the device
torch.cuda.set_device(args.local_rank)
device = torch.device('cuda:'+str(args.local_rank))
dist.init_process_group(backend='nccl', init_method='env://')
SEED=42
torch.cuda.manual_seed_all(SEED)
model = DeCap()
clip_model_type = "ViT-B/32"
clip_model_name = clip_model_type.replace('/', '_')
clip_model, preprocess = clip.load(clip_model_type, device=device, jit=False)
clip_model.eval()
loss_ce = torch.nn.CrossEntropyLoss(ignore_index=0,label_smoothing=0.1)
model.to(device)
model = DDP(
model,
device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True
)
optimizer = AdamW(model.parameters(),lr=lr)
sampler = DistributedSampler(dataset)
train_dataloader = DataLoader(dataset, sampler=sampler,batch_size=batch_size,drop_last=True)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=warmup_steps, num_training_steps=epochs * len(train_dataloader)
)
for epoch in range(epochs):
loss_token_save,ac_save= 0,0
sys.stdout.flush()
if args.is_master:
print(f">>> Training epoch {epoch}")
progress = tqdm(total=int(len(train_dataloader)/10), desc=output_prefix)
dist.barrier()
for idx,(clip_tokens,clip_tokens_77) in enumerate(train_dataloader):
clip_tokens,clip_tokens_77 = clip_tokens.to(device),clip_tokens_77.to(device)
with torch.no_grad():
feature_text = clip_model.encode_text(clip_tokens_77)
feature_text /= feature_text.norm(dim=-1, keepdim=True)
# feature_text = noise_injection(feature_text,device = device)
# shape = clip_tokens.shape
# arr = torch.where(torch.rand(shape) < 0.9, torch.ones(shape), torch.zeros(shape)).to(device).long()
outputs = model(feature_text.float(),clip_tokens)
logits = outputs
logits = logits.logits
logits = logits[:,: -1]
clip_tokens = clip_tokens.flatten()
logits = logits.reshape(-1, logits.shape[-1])
loss_token = loss_ce(logits, clip_tokens)
ac=((logits.argmax(1)==clip_tokens)*(clip_tokens>0)).sum()/(clip_tokens>0).sum()
optimizer.zero_grad()
loss_all = loss_token
loss_all.backward()
optimizer.step()
scheduler.step()
if args.is_master:
if(idx+1) %10 ==0:
progress.set_postfix({"loss_token": loss_token_save/10.0,"acc_token":ac_save/10.0})
progress.update()
loss_token_save,ac_save= 0,0
else:
loss_token_save += loss_token.item()
ac_save += ac.item()
if args.is_master:
log_dir = './log/'+args.dataset+'.txt'
with open(log_dir,'a+') as f:
f.writelines('epoch ' +str(epoch) +': '+ progress.postfix+'\r\n')
progress.close()
if epoch % args.save_every == 0 or epoch == epochs - 1:
torch.save(
model.module.state_dict(),
os.path.join(output_dir, f"{output_prefix}-{epoch:03d}.pt"),
)
return model
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--data', default='./data/coco/doubleMTA_lr1e5_ignore0.pkl')
parser.add_argument('--out_dir', default='./coco_model')
parser.add_argument('--prefix', default='./coco_prefix', help='prefix for saved filenames')
parser.add_argument('--dataset', default='coco', help='coco or cc3m or bookcorpus')
parser.add_argument('--epochs', type=int, default=10)
parser.add_argument('--save_every', type=int, default=1)
parser.add_argument('--prefix_length', type=int, default=1)
parser.add_argument('--prefix_length_clip', type=int, default=1)
parser.add_argument('--bs', type=int, default=64)
parser.add_argument('--only_prefix', dest='only_prefix', action='store_true')
parser.add_argument('--mapping_type', type=str, default='mlp', help='mlp/transformer')
parser.add_argument('--num_layers', type=int, default=8)
parser.add_argument('--is_rn', dest='is_rn', action='store_true')
parser.add_argument('--normalize_prefix', dest='normalize_prefix', action='store_true')
parser.add_argument('--local_rank', type=int, default=-1, metavar='N', help='Local process rank.')
args = parser.parse_args()
prefix_length = args.prefix_length
dataset = ClipCocoDataset('data/'+args.dataset+'_train.json', prefix_length, normalize_prefix=args.normalize_prefix)
train_decoder(dataset, args, output_dir=args.out_dir, output_prefix=args.prefix)
if __name__ == '__main__':
main()