
Danny Hermes Stuff About Curve Intersection

NOTE: To extract the LATEX source and other sources files from this PDF file, execute:

pdftk curve_intersection_potpourri.pdf unpack_files output .

Contents

1 Some Bézier Facts 1
1.1 Bounding Box . 1

2 Curve-Curve Intersection 2
2.1 Intersection Corner Cases . 2

2.1.1 Double Root . 3
2.1.2 Double Root: Zero Function . 3
2.1.3 Triple Root . 3
2.1.4 Same Curve . 4

1 Some Bézier Facts

1.1 Bounding Box

For a Bézier curve, de Casteljau’s algorithm (cite Ch. 4 Farin2001) ensures that the graph of γ ([0, 1]) is
contained in the convex hull of the control points:

As an easier to compute shape (and easier to compute with), we instead use bounding rectangles which
simply find the extremal x and y values among the control points:

This way, a first check that curves don’t intersect can be done quickly:

1

https://en.wikipedia.org/wiki/De_Casteljau%27s_algorithm

Danny Hermes Stuff About Curve Intersection

MAYBE MAYBE NO

Similarly, for a Bézier triangle (cite Ch. 17 Farin2001), the triangular1 de Casteljau algorithm also
guarantees the graph of γ (T)2 is contained in the convex hull of the control points.

but we still prefer the bounding rectangle for ease of computation:

2 Curve-Curve Intersection

This is a collection of things that could (should?) be said somewhere, but not in the main paper.

2.1 Intersection Corner Cases

Via implicitization, algebraic curve intersection is equivalent to polynomial root finding. Just as with poly-
nomial root finding, non-simple roots can cause loss of numerical precision.

1Using three barycentric coordinates in R2.
2Here T is the unit simplex in R2.

2

https://en.wikipedia.org/wiki/Bezier_triangle
https://gist.github.com/dhermes/44e7c8762902f88e197f4f10ceaf26c7

Danny Hermes Stuff About Curve Intersection

2.1.1 Double Root

For example, two tangent curves correspond to a double (or worse) root. To see this, consider

γ0(s) =
1

2

[
4s

(2s− 1)
2

]
, γ1(t) =

1

8

[
8t+ 4

− (2t− 1)
2

]
. (1)

γ0

([
1
4
, 3

4

])

γ1 ([0, 1])

These curves are tangent at
[

1 0
]T

when s = t = 1
2 . Implicitizing γ0 and plugging in γ1 gives

f0(x, y) = −2
(
x2 − 2x− 2y + 1

)
=⇒ 0 = f0 (x1(t), y1(t)) = −(2t− 1)2 (2)

which is a double root as expected.

2.1.2 Double Root: Zero Function

If we instead formulate the problem as finding zeros of

F (s, t) = γ0(s)− γ1(t). (3)

This function has Jacobian

DF =
1

2

[
4 −2

8s− 4 2t− 1

]
(4)

which is not invertible (since there is a zero row) at the solution s = t = 1
2 .

2.1.3 Triple Root

For an even worse example, note that two degree two parametric curves can intersect, be tangent and have
the same curvature at a point without being the same curve.

Consider

γ0(s) =

[
s(2s+ 1)

s2

]
, γ1(t) =

1

4

[
3t(3t− 2)
(3t− 2)2

]
. (5)

γ0

([
−1

2
, 1

2

])

γ1

([
1
3
, 1
])

Implicitizing γ0 and plugging in γ1 gives a triple root:

f0(x, y) = x2 − 4xy + 4y2 − y =⇒ 0 = f0 (x1(t), y1(t)) =
3

16
(t− 2) (3t− 2)

3
. (6)

So the curves intersect at γ0(0) = γ1
(
2
3

)
=

[
0 0

]T
and at these points, the tangent vectors are parallel

to
[

1 0
]T

(hence making the curves tangent). Finally, the (signed) curvature of each of these functions

is identical: κ0(0) = κ1
(
2
3

)
= 2. However, the curves are not the same:

f1(x, y) =
81

16

(
x2 − 2xy + y2 − y

)
. (7)

3

Danny Hermes Stuff About Curve Intersection

2.1.4 Same Curve

Another problem arises when we try to intersect two different sections of the same curve (i.e. coincident
curves). This is not the same kind of corner case, i.e. there isn’t the same worry about numerical loss of
precision. Instead, the problem is that we now have infinitely many intersections (a continuum). As an
example:

γ0(s) =
1

4

[
(3s− 1)

2 − 1

(3s− 2)
2

]
, γ1(t) =

1

16

[
(12t− 5) (12t− 1)

(12t− 5)
2

]
. (8)

γ0 ([0, 1])

γ1

([
1
4
, 3

4

])

However, implicitizing, we find both give

16f0(x, y) = f1(x, y) = 81
(
x2 − 2xy + y2 − y

)
. (9)

In some sense, we’d like to find the two endpoints that define the shared section of the curve. They are

γ0

(
1

3

)
= γ1

(
1

4

)
=

1

4

[
−1
1

]
γ0 (1) = γ1

(
7

12

)
=

1

4

[
3
1

]
. (10)

4

	Some Bézier Facts
	Bounding Box

	Curve-Curve Intersection
	Intersection Corner Cases
	Double Root
	Double Root: Zero Function
	Triple Root
	Same Curve

\documentclass[letterpaper,10pt]{article}

\usepackage[margin=1in]{geometry}
\usepackage{amsmath,amsthm,amssymb,graphicx}
\usepackage{fancyvrb} %% For Verbatim environment

\usepackage[usenames, dvipsnames]{color}
\usepackage{hyperref}
\hypersetup{
 colorlinks=true,
 urlcolor=MidnightBlue,
 linkcolor=MidnightBlue,
 citecolor=ForestGreen,
 pdfinfo={
 CreationDate={D:20180118115855},
 ModDate={D:20180118115855},
 },
}

\usepackage{embedfile}
\embedfile{\jobname.tex}

\usepackage{fancyhdr}
\pagestyle{fancy}
\lhead{Danny Hermes}
\rhead{Stuff About Curve Intersection}

\renewcommand{\headrulewidth}{0pt}
\renewcommand{\qed}{\(\blacksquare\)}

\begin{document}
\textbf{NOTE:} To extract the \LaTeX\ source and other sources
files from this PDF file, execute:
\begin{Verbatim}[commandchars=\\\{\}]
pdftk \jobname.pdf unpack_files output .
\end{Verbatim}

\tableofcontents

\section{Some B\'{e}zier Facts}

\subsection{Bounding Box}

For a B\'{e}zier curve,
\href{https://en.wikipedia.org/wiki/De_Casteljau%27s_algorithm}{de Casteljau's algorithm}
%% \cite[Ch.~4]{Farin2001}
(cite Ch. 4 Farin2001) ensures that
the graph of \(\gamma\left(\left[0, 1\right]\right)\) is contained in the
convex hull of the control points:

\begin{center}
\includegraphics[scale=0.75]{../images/main_figure06.pdf}
\end{center}

As an easier to compute shape (and easier to compute with),
we instead use bounding rectangles which simply find the
extremal \(x\) and \(y\) values among the control points:

\begin{center}
\includegraphics[scale=0.75]{../images/main_figure07.pdf}
\end{center}

This way, a first check that curves \textbf{don't} intersect can
be done quickly:

\begin{center}
\includegraphics[scale=0.75]{../images/main_figure10.pdf}
\end{center}

Similarly, for a
\href{https://en.wikipedia.org/wiki/Bezier_triangle}{B\'{e}zier triangle}
%% \cite[Ch.~17]{Farin2001},
(cite Ch.~17 Farin2001),
the triangular\footnote{Using three barycentric coordinates
 in \(\mathbf{R}^2\).} de Casteljau algorithm also guarantees
the graph of \(\gamma\left(T\right)\)\footnote{Here \(T\) is the
 unit simplex in \(\mathbf{R}^2\).} is contained in the
convex hull of the control points.

\begin{center}
\includegraphics[scale=0.75]{../images/main_figure08.pdf}
\end{center}

but we still prefer the bounding rectangle for ease of computation:

\begin{center}
\includegraphics[scale=0.75]{../images/main_figure09.pdf}
\end{center}

\section{Curve-Curve Intersection}

This is a collection of things that could (should?) be said
somewhere, but not in the main paper.

\subsection{Intersection Corner Cases}

Via implicitization, algebraic curve intersection is equivalent to
polynomial root finding. Just as with polynomial root finding, non-simple
roots can cause
\href{https://gist.github.com/dhermes/44e7c8762902f88e197f4f10ceaf26c7}{
 loss of numerical precision}.

\subsubsection{Double Root} For example, two tangent
curves correspond to a double (or worse) root. To see this, consider
\begin{equation}
\gamma_0(s) =
\frac{1}{2} \left[\begin{array}{c} 4 s \\ \left(2 s - 1\right)^2
 \end{array}\right], \quad
\gamma_1(t) =
\frac{1}{8} \left[\begin{array}{c} 8 t + 4 \\ -\left(2 t - 1\right)^2
 \end{array}\right].
\end{equation}

\begin{center}
\includegraphics[scale=0.75]{../images/main_figure03.pdf}
\end{center}

These curves are tangent at
\(\left[\begin{array}{c c} 1 & 0 \end{array}\right]^T\)
when \(s = t = \frac{1}{2}\).
%% >>> import sympy
%% >>> s, t, x, y = sympy.symbols('s, t, x, y')
%% >>> f = sympy.resultant(x - (4 * s) / 2, y - ((2 * s - 1)**2) / 2, s)
%% >>> f = f.factor()
%% >>> xt = (8 * t + 4) / 8
%% >>> yt = -((2 * t - 1)**2) / 8
%% >>> ft = f.subs({x: xt, y: yt}).factor()
Implicitizing \(\gamma_0\) and plugging in \(\gamma_1\) gives
\begin{equation}
f_0(x, y) = - 2 \left(x^2 - 2 x - 2 y + 1\right) \Longrightarrow
0 = f_0\left(x_1(t), y_1(t)\right) = -(2t - 1)^2
\end{equation}
which is a double root as expected.

\subsubsection{Double Root: Zero Function} If we instead formulate the problem
as finding zeros of
\begin{equation}
F(s, t) = \gamma_0(s) - \gamma_1(t).
\end{equation}
This function has Jacobian
\begin{equation}
DF = \frac{1}{2} \left[\begin{array}{c c}
 4 & -2 \\
 8 s - 4 & 2 t - 1
 \end{array}\right]
\end{equation}
which is not invertible (since there is a zero row) at the
solution \(s = t = \frac{1}{2}\).
%% >>> import sympy
%% >>> s, t = sympy.symbols('s, t')
%% >>> xs = (4 * s) / 2
%% >>> ys = (2 * s - 1)**2 / 2
%% >>> xt = (8 * t + 4) / 8
%% >>> yt = -((2 * t - 1)**2) / 8
%% >>> F = sympy.Matrix([xs - xt, ys - yt])
%% >>> DF = F.jacobian([s, t])

\subsubsection{Triple Root} For an even worse example, note that two degree
two parametric curves can intersect, be tangent and have the same curvature
at a point without being the same curve.

Consider
\begin{equation}
\gamma_0(s) =
\left[\begin{array}{c}
 s(2s + 1) \\ s^2
 \end{array}\right], \quad
\gamma_1(t) =
\frac{1}{4} \left[\begin{array}{c}
 3t(3t - 2) \\ (3t - 2)^2
 \end{array}\right].
\end{equation}

\begin{center}
\includegraphics[scale=0.75]{../images/main_figure04.pdf}
\end{center}

%% >>> import sympy
%% >>> s, t, x, y = sympy.symbols('s, t, x, y')
%% >>> xs = s * (2 * s + 1)
%% >>> ys = s**2
%% >>> f = sympy.resultant(x - xs, y - ys, s)
%% >>> xt = 3 * t * (3 * t - 2) / 4
%% >>> yt = (3 * t - 2)**2 / 4
%% >>> ft = f.subs({x: xt, y: yt}).factor()
Implicitizing \(\gamma_0\) and plugging in
\(\gamma_1\) gives a triple root:
\begin{equation}
f_0(x, y) = x^2 - 4 x y + 4 y^2 - y \Longrightarrow
0 = f_0\left(x_1(t), y_1(t)\right) =
\frac{3}{16} \left(t - 2\right) \left(3 t - 2\right)^3.
\end{equation}
So the curves intersect at
%% >>> sympy.Matrix([xs, ys]).subs({s: 0})
%% >>> t_val = sympy.Rational(2, 3)
%% >>> sympy.Matrix([xt, yt]).subs({t: t_val})
\(\gamma_0(0) = \gamma_1\left(\frac{2}{3}\right) =
\left[\begin{array}{c c} 0 & 0 \end{array}\right]^T\)
and at these points, the tangent vectors are parallel to
%% >>> sympy.Matrix([xs, ys]).diff(s).subs({s: 0})
%% >>> sympy.Matrix([xt, yt]).diff(t).subs({t: t_val})
\(\left[\begin{array}{c c} 1 & 0 \end{array}\right]^T\)
(hence making the curves tangent).
Finally, the (signed) curvature of each of these functions is identical:
%% >>> numer = xs.diff(s) * ys.diff(s, 2) - xs.diff(s, 2) * ys.diff(s)
%% >>> numer = numer.subs({s: 0})
%% >>> denom = xs.diff(s)**2 + ys.diff(s)**2
%% >>> denom = denom.subs({s: 0})
%% >>> numer / sympy.sqrt(denom)**3
%% >>> numer = xt.diff(t) * yt.diff(t, 2) - xt.diff(t, 2) * yt.diff(t)
%% >>> numer = numer.subs({t: t_val})
%% >>> denom = xt.diff(t)**2 + yt.diff(t)**2
%% >>> denom = denom.subs({t: t_val})
%% >>> numer / sympy.sqrt(denom)**3
\(\kappa_0(0) = \kappa_1\left(\frac{2}{3}\right) = 2\).
However, the curves are not the same:
%% >>> f1 = sympy.resultant(x - xt, y - yt, t).factor()
\begin{equation}
f_1(x, y) = \frac{81}{16} \left(x^2 - 2 x y + y^2 - y\right).
\end{equation}

\subsubsection{Same Curve} Another problem arises when we try to intersect two
different sections of the same curve (i.e. coincident curves). This is not
the same kind of corner case, i.e. there isn't the same worry about
numerical loss of precision. Instead, the problem is that we now have
infinitely many intersections (a continuum). As an example:
\begin{equation}
\gamma_0(s) =
\frac{1}{4} \left[\begin{array}{c}
 \left(3 s - 1\right)^2 - 1 \\
 \left(3 s - 2\right)^2
 \end{array}\right], \quad
\gamma_1(t) =
\frac{1}{16} \left[\begin{array}{c}
 \left(12 t - 5\right)\left(12 t - 1\right) \\
 \left(12 t - 5\right)^2
 \end{array}\right].
\end{equation}

\begin{center}
\includegraphics[scale=0.75]{../images/main_figure05.pdf}
\end{center}

However, implicitizing, we find both give
%% >>> import sympy
%% >>> s, t, x, y = sympy.symbols('s, t, x, y')
%% >>> xs = ((3 * s - 1)**2 - 1) / 4
%% >>> ys = (3 * s - 2)**2 / 4
%% >>> f0 = sympy.resultant(x - xs, y - ys, s).factor()
%% >>> xt = (12 * t - 5) * (12 * t - 1) / 16
%% >>> yt = (12 * t - 5)**2 / 16
%% >>> f1 = sympy.resultant(x - xt, y - yt, t).factor()
\begin{equation}
16 f_0(x, y) = f_1(x, y) =
81 \left(x^2 - 2 x y + y^2 - y\right).
\end{equation}
In some sense, we'd like to find the two endpoints that
define the \textbf{shared section} of the curve. They
are
\begin{equation}
\gamma_0\left(\frac{1}{3}\right) = \gamma_1\left(\frac{1}{4}\right)
= \frac{1}{4} \left[\begin{array}{c} -1 \\ 1\end{array}\right]
\qquad
\gamma_0\left(1\right) = \gamma_1\left(\frac{7}{12}\right)
= \frac{1}{4} \left[\begin{array}{c} 3 \\ 1\end{array}\right].
\end{equation}

\end{document}

