-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathparsepapers.tex
801 lines (798 loc) · 41.1 KB
/
parsepapers.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
\textcolor{color1}{\textbf{Submitted papers:}}
\vspace{-0.5cm}
\cvitem{}{\small\hspace{-1cm}\begin{longtable}{rp{0.3cm}p{15.8cm}}
%
\textbf{4.} & & \textit{Forecasting the population properties of merging black holes.}
\newline{}
V. De Renzis, F. Iacovelli, \textbf{D. Gerosa}, M. Mancarella, C. Pacilio.
\newline{}
\href{https://arxiv.org/abs/2410.17325 [astro-ph.HE]}{arXiv:2410.17325 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{3.} & & \textit{A test for LISA foreground Gaussianity and stationarity. I. Galactic white-dwarf binaries.}
\newline{}
R. Buscicchio, A. Klein, V. Korol, F. Di Renzo, C. J. Moore, \textbf{D. Gerosa}, A. Carzaniga.
\newline{}
\href{https://arxiv.org/abs/2410.08263 [astro-ph.HE]}{arXiv:2410.08263 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{2.} & & \textit{Which is which? Identification of the two compact objects in gravitational-wave binaries.}
\newline{}
\textbf{D. Gerosa}, V. De Renzis, F. Tettoni, M. Mould, A. Vecchio, C. Pacilio.
\newline{}
\href{https://arxiv.org/abs/2409.07519 [astro-ph.HE]}{arXiv:2409.07519 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{1.} & & \textit{The last three years: multiband gravitational-wave observations of stellar-mass binary black holes.}
\newline{}
A. Klein, G. Pratten, R. Buscicchio, P. Schmidt, C. J. Moore, E. Finch, A. Bonino, L. M. Thomas, N. Williams, \textbf{D. Gerosa}, S. McGee, M. Nicholl, A. Vecchio.
\newline{}
\href{https://arxiv.org/abs/2204.03423}{arXiv:2204.03423 [gr-qc].}
\vspace{0.09cm}\\
%
\end{longtable} }
\textcolor{color1}{\textbf{Papers in major peer-reviewed journals:}}
\vspace{-0.5cm}
\cvitem{}{\small\hspace{-1cm}\begin{longtable}{rp{0.3cm}p{15.8cm}}
%
\textbf{91.} & & \textit{Orbital eccentricity in general relativity from catastrophe theory.}
\newline{}
M. Boschini, N. Loutrel, \textbf{D. Gerosa}, G. Fumagalli.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.111.024008}{\prd 111 (2025) 024008}. \href{https://arxiv.org/abs/2411.00098 [gr-qc]}{arXiv:2411.00098 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{90.} & & \textit{Stars or gas? Constraining the hardening processes of massive black-hole binaries with LISA.}
\newline{}
A. Spadaro, R. Buscicchio, D. Izquierdo-Villalba, \textbf{D. Gerosa}, A. Klein, G. Pratten.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.111.023004}{\prd 111 (2025) 023004 }. \href{https://arxiv.org/abs/2409.13011 [astro-ph.HE]}{arXiv:2409.13011 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{89.} & & \textit{Probing AGN jet precession with LISA.}
\newline{}
N. Steinle, \textbf{D. Gerosa}, M. G. H. Krause.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.110.123034}{\prd 110 (2024) 123034}. \href{https://arxiv.org/abs/2403.00066}{arXiv:2403.00066 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{88.} & & \textit{Minimum gas mass accreted by spinning intermediate-mass black holes in stellar clusters.}
\newline{}
K. Kritos, L. Reali, \textbf{D. Gerosa}, E. Berti.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.110.123017}{\prd 110 (2024) 123017}. \href{https://arxiv.org/abs/2409.15439 [astro-ph.HE]}{arXiv:2409.15439 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{87.} & & \textit{Flexible mapping of ringdown amplitudes for nonprecessing binary black holes.}
\newline{}
C. Pacilio, S. Bhagwat, F. Nobili, \textbf{D. Gerosa}.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.110.103037}{\prd 110 (2024) 103037}. \href{https://arxiv.org/abs/2408.05276}{arXiv:2408.05276 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{86.} & & \textit{Classifying binary black holes from Population III stars with the Einstein Telescope: a machine-learning approach.}
\newline{}
F. Santoliquido, U. Dupletsa, J. Tissino, M. Branchesi, F. Iacovelli, G. Iorio, M. Mapelli, \textbf{D. Gerosa}, J. Harms, M. Pasquato.
\newline{}
\href{https://doi.org/10.1051/0004-6361/202450381}{\aap 690 (2024) A362}. \href{https://arxiv.org/abs/2404.10048}{arXiv:2404.10048 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{85.} & & \textit{Residual eccentricity as a systematic uncertainty on the formation channels of binary black holes.}
\newline{}
G. Fumagalli, I. Romero-Shaw, \textbf{D. Gerosa}, V. De Renzis, K. Kritos, A. Olejak.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.110.063012}{\prd 110 (2024) 063012}. \href{https://arxiv.org/abs/2405.14945}{arXiv:2405.14945 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{84.} & & \textit{Astrophysical and relativistic modeling of the recoiling black-hole candidate in quasar 3C 186.}
\newline{}
M. Boschini, \textbf{D. Gerosa}, O. S. Salafia, M. Dotti.
\newline{}
\href{https://doi.org/10.1051/0004-6361/202449596}{\aap 686 (2024) A245}. \href{https://arxiv.org/abs/2402.08740}{arXiv:2402.08740 [astro-ph.GA].}
\vspace{0.09cm}\\
%
\textbf{83.} & & \textit{Quick recipes for gravitational-wave selection effects.}
\newline{}
\textbf{D. Gerosa}, M. Bellotti.
\newline{}
\href{https://iopscience.iop.org/article/10.1088/1361-6382/ad4509}{\cqg 41 (2024) 125002}. \href{https://arxiv.org/abs/2404.16930}{arXiv:2404.16930 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{82.} & & \textit{pAGN: the one-stop solution for AGN disc modeling.}
\newline{}
D. Gangardt, A. A. Trani, C. Bonnerot, \textbf{D. Gerosa}.
\newline{}
\href{https://doi.org/10.1093/mnras/stae1117}{\mnras 530 (2024) 3986–3997}. \href{https://arxiv.org/abs/2403.00060}{arXiv:2403.00060 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{81.} & & \textit{Catalog variance of testing general relativity with gravitational-wave data.}
\newline{}
C. Pacilio, \textbf{D. Gerosa}, S. Bhagwat.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.109.L081302}{\prdl 109 (2024) L081302}. \href{https://arxiv.org/abs/2310.03811}{arXiv:2310.03811 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{80.} & & \textit{Calibrating signal-to-noise ratio detection thresholds using gravitational-wave catalogs.}
\newline{}
M. Mould, C. J. Moore, \textbf{D. Gerosa}.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.109.063013}{\prd 109 (2024) 063013}. \href{https://arxiv.org/abs/2311.12117}{arXiv:2311.12117 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{79.} & & \textit{Spin-eccentricity interplay in merging binary black holes.}
\newline{}
G. Fumagalli, \textbf{D. Gerosa}.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.108.124055}{\prd 108 (2023) 124055}. \href{https://arxiv.org/abs/2310.16893}{arXiv:2310.16893 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{78.} & & \textit{Glitch systematics on the observation of massive black-hole binaries with LISA.}
\newline{}
A. Spadaro, R. Buscicchio, D. Vetrugno, A. Klein, \textbf{D. Gerosa}, S. Vitale, R. Dolesi, W. J. Weber, M. Colpi.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.108.123029}{\prd 108 (2023) 123029}. \href{https://arxiv.org/abs/2306.03923}{arXiv:2306.03923 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{77.} & & \textit{Black-hole mergers in disk-like environments could explain the observed $q-\chi_\mathrm{eff}$ correlation.}
\newline{}
A. Santini, \textbf{D. Gerosa}, R. Cotesta, E. Berti.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.108.083033}{\prd 108 (2023) 083033}. \href{https://arxiv.org/abs/2308.12998}{arXiv:2308.12998 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{76.} & & \textit{Extending black-hole remnant surrogate models to extreme mass ratios.}
\newline{}
M. Boschini, \textbf{D. Gerosa}, V. Varma, C. Armaza, M. Boyle, M. S. Bonilla, A. Ceja, Y. Chen, N. Deppe, M. Giesler, L. E. Kidder, G. Lara, O. Long, S. Ma, K. Mitman, P. J. Nee, H. P. Pfeiffer, A. Ramos-Buades, M. A. Scheel, N. L. Vu, J. Yoo.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.108.084015}{\prd 108 (2023) 084015}. \href{https://arxiv.org/abs/2307.03435}{arXiv:2307.03435 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{75.} & & \textit{One to many: comparing single gravitational-wave events to astrophysical populations.}
\newline{}
M. Mould, \textbf{D. Gerosa}, M. Dall'Amico, M. Mapelli.
\newline{}
\href{https://doi.org/10.1093/mnras/stad2502}{\mnras 525 (2023) 3986–3997}. \href{https://arxiv.org/abs/2305.18539}{arXiv:2305.18539 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{74.} & & \textit{Efficient multi-timescale dynamics of precessing black-hole binaries.}
\newline{}
\textbf{D. Gerosa}, G. Fumagalli, M. Mould, G. Cavallotto, D. Padilla Monroy, D. Gangardt, V. De Renzis.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.108.024042}{\prd 108 (2023) 024042}. \href{https://arxiv.org/abs/2304.04801}{arXiv:2304.04801 [gr-qc].}
\newline{}
\textcolor{color1}{$\bullet$} Open source code.
\vspace{0.09cm}\\
%
\textbf{73.} & & \textit{Parameter estimation of binary black holes in the endpoint of the up-down instability.}
\newline{}
V. De Renzis, \textbf{D. Gerosa}, M. Mould, R. Buscicchio, L. Zanga.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.108.024024}{\prd 108 (2023) 024024}. \href{https://arxiv.org/abs/2304.13063}{arXiv:2304.13063 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{72.} & & \textit{Inferring, not just detecting: metrics for high-redshift sources observed with third-generation gravitational-wave detectors.}
\newline{}
M. Mancarella, F. Iacovelli, \textbf{D. Gerosa}.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.L101302}{\prdl 107 (2023) L101302}. \href{https://arxiv.org/abs/2303.16323}{arXiv:2303.16323 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{71.} & & \textit{Eccentricity or spin precession? Distinguishing subdominant effects in gravitational-wave data.}
\newline{}
I. Romero-Shaw, \textbf{D. Gerosa}, N. Loutrel.
\newline{}
\href{https://doi.org/10.1093/mnras/stad031}{\mnras 519 (2023) 5352–5357}. \href{https://arxiv.org/abs/2211.07528}{arXiv:2211.07528 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{70.} & & \textit{The Bardeen-Petterson effect, disk breaking, and the spin orientations of supermassive black-hole binaries.}
\newline{}
N. Steinle, \textbf{D. Gerosa}.
\newline{}
\href{https://doi.org/10.1093/mnras/stac3821}{\mnras 519 (2023) 5031–5042}. \href{https://arxiv.org/abs/2211.00044}{arXiv:2211.00044 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{69.} & & \textit{Deep learning and Bayesian inference of gravitational-wave populations: hierarchical black-hole mergers.}
\newline{}
M. Mould, \textbf{D. Gerosa}, S. R. Taylor.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.103013}{\prd 106 (2022) 103013}. \href{https://arxiv.org/abs/2203.03651}{arXiv:2203.03651 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{68.} & & \textit{Characterization of merging black holes with two precessing spins.}
\newline{}
V. De Renzis, \textbf{D. Gerosa}, G. Pratten, P. Schmidt, M. Mould.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.084040}{\prd 106 (2022) 084040}. \href{https://arxiv.org/abs/2207.00030}{arXiv:2207.00030 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{67.} & & \textit{Which black hole formed first? Mass-ratio reversal in massive binary stars from gravitational-wave data.}
\newline{}
M. Mould, \textbf{D. Gerosa}, F. S. Broekgaarden, N. Steinle.
\newline{}
\href{https://doi.org/10.1093/mnras/stac2859}{\mnras 517 (2022) 2738–2745}. \href{https://arxiv.org/abs/2205.12329}{arXiv:2205.12329 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{66.} & & \textit{The irreducible mass and the horizon area of LIGO's black holes.}
\newline{}
\textbf{D. Gerosa}, C. M. Fabbri, U. Sperhake.
\newline{}
\href{https://iopscience.iop.org/article/10.1088/1361-6382/ac8332}{\cqg 39 (2022) 175008}. \href{https://arxiv.org/abs/2202.08848}{arXiv:2202.08848 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{65.} & & \textit{Constraining black-hole binary spin precession and nutation with sequential prior conditioning.}
\newline{}
D. Gangardt, \textbf{D. Gerosa}, M. Kesden, V. De Renzis, N. Steinle.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.024019}{\prd 106 (2022) 024019}. \href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.109901}{Erratum: 107 (2023) 109901}. \href{https://arxiv.org/abs/2204.00026}{arXiv:2204.00026 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{64.} & & \textit{Inferring the properties of a population of compact binaries in presence of selection effects.}
\newline{}
S. Vitale, \textbf{D. Gerosa}, W. M. Farr, S. R. Taylor.
\newline{}
\href{https://doi.org/10.1007/978-981-15-4702-7_45-1}{Chapter in: Handbook of Gravitational Wave Astronomy, Springer, Singapore}. \href{https://arxiv.org/abs/2007.05579}{arXiv:2007.05579 [astro-ph.IM].}
\vspace{0.09cm}\\
%
\textbf{63.} & & \textit{Gravitational-wave population inference at past time infinity.}
\newline{}
M. Mould, \textbf{D. Gerosa}.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.024076}{\prd 105 (2022) 024076}. \href{https://arxiv.org/abs/2110.05507}{arXiv:2110.05507 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{62.} & & \textit{The Bardeen-Petterson effect in accreting supermassive black-hole binaries: disc breaking and critical obliquity.}
\newline{}
R. Nealon, E. Ragusa, \textbf{D. Gerosa}, G. Rosotti, R. Barbieri.
\newline{}
\href{https://doi.org/10.1093/mnras/stab3328}{\mnras 509 (2022) 5608–5621}. \href{https://arxiv.org/abs/2111.08065}{arXiv:2111.08065 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{61.} & & \textit{Population-informed priors in gravitational-wave astronomy.}
\newline{}
C. J. Moore, \textbf{D. Gerosa}.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.083008}{\prd 104 (2021) 083008}. \href{https://arxiv.org/abs/2108.02462}{arXiv:2108.02462 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{60.} & & \textit{Looking for the parents of LIGO's black holes.}
\newline{}
V. Baibhav, E. Berti, \textbf{D. Gerosa}, M. Mould, K. W. K. Wong.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.084002}{\prd 104 (2021) 084002}. \href{https://arxiv.org/abs/2105.12140}{arXiv:2105.12140 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{59.} & & \textit{Modeling the outcome of supernova explosions in binary population synthesis using the stellar compactness.}
\newline{}
M. Dabrowny, N. Giacobbo, \textbf{D. Gerosa}.
\newline{}
\href{https://link.springer.com/article/10.1007/s12210-021-01019-8}{Rendiconti Lincei. Scienze Fisiche e Naturali 32 (2021) 665–673}. \href{https://arxiv.org/abs/2106.12541}{arXiv:2106.12541 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{58.} & & \textit{Bayesian parameter estimation of stellar-mass black-hole binaries with LISA.}
\newline{}
R. Buscicchio, A. Klein, E. Roebber, C. J. Moore, \textbf{D. Gerosa}, E. Finch, A. Vecchio.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.044065}{\prd 104 (2021) 044065}. \href{https://arxiv.org/abs/2106.05259}{arXiv:2106.05259 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{57.} & & \textit{Hierarchical mergers of stellar-mass black holes and their gravitational-wave signatures.}
\newline{}
\textbf{D. Gerosa}, M. Fishbach.
\newline{}
\href{https://www.nature.com/articles/s41550-021-01398-w}{\natastro 5 (2021) 749-760}. \href{https://arxiv.org/abs/2105.03439}{arXiv:2105.03439 [gr-qc].}
\newline{}
\textcolor{color1}{$\bullet$} Review article. Covered by press release.
\vspace{0.09cm}\\
%
\textbf{56.} & & \textit{High mass but low spin: an exclusion region to rule out hierarchical black-hole mergers as a mechanism to populate the pair-instability mass gap.}
\newline{}
\textbf{D. Gerosa}, N. Giacobbo, A. Vecchio.
\newline{}
\href{https://iopscience.iop.org/article/10.3847/1538-4357/ac00bb}{\apj 915 (2021) 56}. \href{https://arxiv.org/abs/2104.11247}{arXiv:2104.11247 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{55.} & & \textit{Testing general relativity with gravitational-wave catalogs: the insidious nature of waveform systematics.}
\newline{}
C. J. Moore, E. Finch, R. Buscicchio, \textbf{D. Gerosa}.
\newline{}
\href{https://www.sciencedirect.com/science/article/pii/S2589004221005459}{iScience 24 (2021) 102577}. \href{https://arxiv.org/abs/2103.16486}{arXiv:2103.16486 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{54.} & & \textit{A taxonomy of black-hole binary spin precession and nutation.}
\newline{}
D. Gangardt, N. Steinle, M. Kesden, \textbf{D. Gerosa}, E. Stoikos.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.124026}{\prd 103 (2021) 124026}. \href{https://arxiv.org/abs/2103.03894}{arXiv:2103.03894 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{53.} & & \textit{A generalized precession parameter $\chi_\mathrm{p}$ to interpret gravitational-wave data.}
\newline{}
\textbf{D. Gerosa}, M. Mould, D. Gangardt, P. Schmidt, G. Pratten, L. M. Thomas.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.064067}{\prd 103 (2021) 064067}. \href{https://arxiv.org/abs/2011.11948}{arXiv:2011.11948 [gr-qc].}
\newline{}
\textcolor{color1}{$\bullet$} Open source code.
\vspace{0.09cm}\\
%
\textbf{52.} & & \textit{Eccentric binary black hole surrogate models for the gravitational waveform and remnant properties: comparable mass, nonspinning case.}
\newline{}
T. Islam, V. Varma, J. Lodman, S. E. Field, G. Khanna, M. A. Scheel, H. P. Pfeiffer, \textbf{D. Gerosa}, L. E. Kidder.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.064022}{\prd 103 (2021) 064022}. \href{https://arxiv.org/abs/2101.11798}{arXiv:2101.11798 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{51.} & & \textit{Up-down instability of binary black holes in numerical relativity.}
\newline{}
V. Varma, M. Mould, \textbf{D. Gerosa}, M. A. Scheel, L. E. Kidder, H. P. Pfeiffer.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.064003}{\prd 103 (2021) 064003}. \href{https://arxiv.org/abs/2012.07147}{arXiv:2012.07147 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{50.} & & \textit{Massive black hole binary inspiral and spin evolution in a cosmological framework.}
\newline{}
M. Sayeb, L. Blecha, L. Z. Kelley, \textbf{D. Gerosa}, M. Kesden, J. Thomas.
\newline{}
\href{https://doi.org/10.1093/mnras/staa3826}{\mnras 501 (2021) 2531-2546}. \href{https://arxiv.org/abs/2006.06647}{arXiv:2006.06647 [astro-ph.GA].}
\vspace{0.09cm}\\
%
\textbf{49.} & & \textit{Gravitational-wave selection effects using neural-network classifiers.}
\newline{}
\textbf{D. Gerosa}, G. Pratten, A. Vecchio.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.103020}{\prd 102 (2020) 103020}. \href{https://arxiv.org/abs/2007.06585}{arXiv:2007.06585 [astro-ph.HE].}
\newline{}
\textcolor{color1}{$\bullet$} Open source code.
\vspace{0.09cm}\\
%
\textbf{48.} & & \textit{Mapping the asymptotic inspiral of precessing binary black holes to their merger remnants.}
\newline{}
L. Reali, M. Mould, \textbf{D. Gerosa}, V. Varma.
\newline{}
\href{https://iopscience.iop.org/article/10.1088/1361-6382/abb639/meta}{\cqg 37 (2020) 225005}. \href{https://arxiv.org/abs/2005.01747}{arXiv:2005.01747 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{47.} & & \textit{Astrophysical implications of GW190412 as a remnant of a previous black-hole merger.}
\newline{}
\textbf{D. Gerosa}, S. Vitale, E. Berti.
\newline{}
\href{https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.101103}{\prl 125 (2020) 101103}. \href{https://arxiv.org/abs/2005.04243}{arXiv:2005.04243 [astro-ph.HE].}
\newline{}
\textcolor{color1}{$\bullet$} Covered by press release.
\vspace{0.09cm}\\
%
\textbf{46.} & & \textit{Structure of neutron stars in massive scalar-tensor gravity.}
\newline{}
R. Rosca-Mead, C. J. Moore, U. Sperhake, M. Agathos, \textbf{D. Gerosa}.
\newline{}
\href{https://www.mdpi.com/2073-8994/12/9/1384}{Symmetry 12 (2020) 1384}. \href{https://arxiv.org/abs/2007.14429}{arXiv:2007.14429 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{45.} & & \textit{Core collapse in massive scalar-tensor gravity.}
\newline{}
R. Rosca-Mead, U. Sperhake, C. J. Moore, M. Agathos, \textbf{D. Gerosa}, C. D. Ott.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.044010}{\prd 102 (2020) 044010}. \href{https://arxiv.org/abs/2005.09728}{arXiv:2005.09728 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{44.} & & \textit{The mass gap, the spin gap, and the origin of merging binary black holes.}
\newline{}
V. Baibhav, \textbf{D. Gerosa}, E. Berti, K. W. K. Wong, T. Helfer, M. Mould.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.043002}{\prd 102 (2020) 043002}. \href{https://arxiv.org/abs/2004.00650}{arXiv:2004.00650 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{43.} & & \textit{The Bardeen-Petterson effect in accreting supermassive black-hole binaries: a systematic approach.}
\newline{}
\textbf{D. Gerosa}, G. Rosotti, R. Barbieri.
\newline{}
\href{https://doi.org/10.1093/mnras/staa1693}{\mnras 496 (2020) 3060-3075}. \href{https://arxiv.org/abs/2004.02894}{arXiv:2004.02894 [astro-ph.GA].}
\vspace{0.09cm}\\
%
\textbf{42.} & & \textit{Populations of double white dwarfs in Milky Way satellites and their detectability with LISA.}
\newline{}
V. Korol, S. Toonen, A. Klein, V. Belokurov, F. Vincenzo, R. Buscicchio, \textbf{D. Gerosa}, C. J. Moore, E. Roebber, E. M. Rossi, A. Vecchio.
\newline{}
\href{https://www.aanda.org/articles/aa/abs/2020/06/aa37764-20/aa37764-20.html}{\aap 638 (2020) A153}. \href{https://arxiv.org/abs/2002.10462}{arXiv:2002.10462 [astro-ph.GA].}
\vspace{0.09cm}\\
%
\textbf{41.} & & \textit{Endpoint of the up-down instability in precessing binary black holes.}
\newline{}
M. Mould, \textbf{D. Gerosa}.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.124037}{\prd 101 (2020) 124037}. \href{https://arxiv.org/abs/2003.02281}{arXiv:2003.02281 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{40.} & & \textit{Black holes in the low mass gap: Implications for gravitational wave observations.}
\newline{}
A. Gupta, \textbf{D. Gerosa}, K. G. Arun, E. Berti, W. Farr, B. S. Sathyaprakash.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.103036}{\prd 101 (2020) 103036}. \href{https://arxiv.org/abs/1909.05804}{arXiv:1909.05804 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{39.} & & \textit{Milky Way satellites shining bright in gravitational waves.}
\newline{}
E. Roebber, R. Buscicchio, A. Vecchio, C. J. Moore, A. Klein, V. Korol, S. Toonen, \textbf{D. Gerosa}, J. Goldstein, S. M. Gaebel, T. E. Woods.
\newline{}
\href{https://iopscience.iop.org/article/10.3847/2041-8213/ab8ac9}{\apjl 894 (2020) L15}. \href{https://arxiv.org/abs/2002.10465}{arXiv:2002.10465 [astro-ph.GA].}
\vspace{0.09cm}\\
%
\textbf{38.} & & \textit{Evolutionary roads leading to low effective spins, high black hole masses, and O1/O2 rates for LIGO/Virgo binary black holes.}
\newline{}
K. Belczynski, J. Klencki, C. E. Fields, A. Olejak, E. Berti, G. Meynet, C. L. Fryer, D. E. Holz, R. O'Shaughnessy, D. A. Brown, T. Bulik, S. C. Leung, K. Nomoto, P. Madau, R, Hirschi, E. Kaiser, S. Jones, S. Mondal, M. Chruslinska, P. Drozda, \textbf{D. Gerosa}, Z. Doctor, M. Giersz, S. Ekstr\:om, C. Georgy, A. Askar, V. Baibhav, D. Wysocki, T. Natan, W. M. Farr, G. Wiktorowicz, M. C. Miller, B. Farr, J.-P. Lasota.
\newline{}
\href{https://www.aanda.org/articles/aa/full_html/2020/04/aa36528-19/aa36528-19.html}{\aap 636 (2020) A104}. \href{https://arxiv.org/abs/1706.07053}{arXiv:1706.07053 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{37.} & & \textit{Amplification of superkicks in black-hole binaries through orbital eccentricity.}
\newline{}
U. Sperhake, R. Rosca-Mead, \textbf{D. Gerosa}, E. Berti.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.024044}{\prd 101 (2020) 024044}. \href{https://arxiv.org/abs/1910.01598}{arXiv:1910.01598 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{36.} & & \textit{Constraining the fraction of binary black holes formed in isolation and young star clusters with gravitational-wave data.}
\newline{}
Y. Bouffanais, M. Mapelli, \textbf{D. Gerosa}, U. N. Di Carlo, N. Giacobbo, E. Berti, V. Baibhav.
\newline{}
\href{https://iopscience.iop.org/article/10.3847/1538-4357/ab4a79}{\apj 886 (2019) 25}. \href{https://arxiv.org/abs/1905.11054}{arXiv:1905.11054 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{35.} & & \textit{Machine-learning interpolation of population-synthesis simulations to interpret gravitational-wave observations: a case study.}
\newline{}
K. W. K. Wong, \textbf{D. Gerosa}.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.100.083015}{\prd 100 (2019) 083015}. \href{https://arxiv.org/abs/1909.06373}{arXiv:1909.06373 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{34.} & & \textit{Surrogate models for precessing binary black hole simulations with unequal masses.}
\newline{}
V. Varma, S. E. Field, M. A. Scheel, J. Blackman, \textbf{D. Gerosa}, L. C. Stein, L. E. Kidder, H. P. Pfeiffer.
\newline{}
{\prr 1 (2019) 033015}. \href{https://arxiv.org/abs/1905.09300}{arXiv:1905.09300 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{33.} & & \textit{Gravitational-wave detection rates for compact binaries formed in isolation: LIGO/Virgo O3 and beyond.}
\newline{}
V. Baibhav, E. Berti, \textbf{D. Gerosa}, M. Mapelli, N. Giacobbo, Y. Bouffanais, U. N. Di Carlo.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.100.064060}{\prd 100 (2019) 064060}. \href{https://arxiv.org/abs/1906.04197}{arXiv:1906.04197 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{32.} & & \textit{Escape speed of stellar clusters from multiple-generation black-hole mergers in the upper mass gap.}
\newline{}
\textbf{D. Gerosa}, E. Berti.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.100.041301}{\prdrc 100 (2019) 041301R}. \href{https://arxiv.org/abs/1906.05295}{arXiv:1906.05295 [astro-ph.HE].}
\newline{}
\textcolor{color1}{$\bullet$} Covered by press release.
\vspace{0.09cm}\\
%
\textbf{31.} & & \textit{Are stellar-mass black-hole binaries too quiet for LISA?.}
\newline{}
C. J. Moore, \textbf{D. Gerosa}, A. Klein.
\newline{}
\href{https://doi.org/10.1093/mnrasl/slz104}{\mnrasl 488 (2019) L94-L98}. \href{https://arxiv.org/abs/1905.11998}{arXiv:1905.11998 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{30.} & & \textit{Optimizing LIGO with LISA forewarnings to improve black-hole spectroscopy.}
\newline{}
R. Tso, \textbf{D. Gerosa}, Y. Chen.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.124043}{\prd 99 (2019) 124043}. \href{https://arxiv.org/abs/1807.00075}{arXiv:1807.00075 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{29.} & & \textit{Multiband gravitational-wave event rates and stellar physics.}
\newline{}
\textbf{D. Gerosa}, S. Ma, K. W. K. Wong, E. Berti, R. O'Shaughnessy, Y. Chen, K. Belczynski.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.103004}{\prd 99 (2019) 103004}. \href{https://arxiv.org/abs/1902.00021}{arXiv:1902.00021 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{28.} & & \textit{Wide nutation: binary black-hole spins repeatedly oscillating from full alignment to full anti-alignment.}
\newline{}
\textbf{D. Gerosa}, A. Lima, E. Berti, U. Sperhake, M. Kesden, R. O'Shaughnessy.
\newline{}
\href{https://iopscience.iop.org/article/10.1088/1361-6382/ab14ae/meta}{\cqg 36 (2019) 105003}. \href{https://arxiv.org/abs/1811.05979}{arXiv:1811.05979 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{27.} & & \textit{The binary black hole explorer: on-the-fly visualizations of precessing binary black holes.}
\newline{}
V. Varma, L. C. Stein, \textbf{D. Gerosa}.
\newline{}
\href{https://iopscience.iop.org/article/10.1088/1361-6382/ab0ee9/meta}{\cqg 36 (2019) 095007}. \href{https://arxiv.org/abs/1811.06552}{arXiv:1811.06552 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{26.} & & \textit{Frequency-domain waveform approximants capturing Doppler shifts.}
\newline{}
K. Chamberlain, C. J. Moore, \textbf{D. Gerosa}, N. Yunes.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.024025}{\prd 99 (2019) 024025}. \href{https://arxiv.org/abs/1809.04799}{arXiv:1809.04799 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{25.} & & \textit{High-accuracy mass, spin, and recoil predictions of generic black-hole merger remnants.}
\newline{}
V. Varma, \textbf{D. Gerosa}, L. C. Stein, F. H'ebert, H. Zhang.
\newline{}
\href{https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.011101}{\prl 122 (2019) 011101}. \href{https://arxiv.org/abs/1809.091259}{arXiv:1809.091259 [gr-qc].}
\newline{}
\textcolor{color1}{$\bullet$} Covered by press release.
\vspace{0.09cm}\\
%
\textbf{24.} & & \textit{Spin orientations of merging black holes formed from the evolution of stellar binaries.}
\newline{}
\textbf{D. Gerosa}, E. Berti, R. O'Shaughnessy, K. Belczynski, M. Kesden, D. Wysocki, W. Gladysz.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.98.084036}{\prd 98 (2018) 084036}. \href{https://arxiv.org/abs/1808.02491}{arXiv:1808.02491 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{23.} & & \textit{Mining gravitational-wave catalogs to understand binary stellar evolution: a new hierarchical bayesian framework.}
\newline{}
S. R. Taylor, \textbf{D. Gerosa}.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.98.083017}{\prd 98 (2018) 083017}. \href{https://arxiv.org/abs/1806.08365}{arXiv:1806.08365 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{22.} & & \textit{Gravitational-wave astrophysics with effective-spin measurements: asymmetries and selection biases.}
\newline{}
K. K. Y. Ng, S. Vitale, A. Zimmerman, K. Chatziioannou, \textbf{D. Gerosa}, C.-J. Haster.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.98.083007}{\prd 98 (2018) 083007}. \href{https://arxiv.org/abs/1805.03046}{arXiv:1805.03046 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{21.} & & \textit{Black-hole kicks from numerical-relativity surrogate models.}
\newline{}
\textbf{D. Gerosa}, F. H'ebert, L. C. Stein.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.104049}{\prd 97 (2018) 104049}. \href{https://arxiv.org/abs/1802.04276}{arXiv:1802.04276 [gr-qc].}
\newline{}
\textcolor{color1}{$\bullet$} Open source code.
\vspace{0.09cm}\\
%
\textbf{20.} & & \textit{Explaining LIGO's observations via isolated binary evolution with natal kicks.}
\newline{}
D. Wysocki, \textbf{D. Gerosa}, R. O'Shaughnessy, K. Belczynski, W. Gladysz, E. Berti, M. Kesden, D. Holz.
\newline{}
\href{https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.043014}{\prd 97 (2018) 043014}. \href{https://arxiv.org/abs/1709.01943}{arXiv:1709.01943 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{19.} & & \textit{Impact of Bayesian priors on the characterization of binary black hole coalescences.}
\newline{}
S. Vitale, \textbf{D. Gerosa}, C.-J. Haster, K. Chatziioannou, A. Zimmerman.
\newline{}
\href{http://dx.doi.org/10.1103/PhysRevLett.119.251103}{\prl 119 (2017) 251103}. \href{https://arxiv.org/abs/1707.04637}{arXiv:1707.04637 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{18.} & & \textit{Long-lived inverse chirp signals from core collapse in massive scalar-tensor gravity.}
\newline{}
U. Sperhake, C. J. Moore, R. Rosca, M. Agathos, \textbf{D. Gerosa}, C. D. Ott.
\newline{}
\href{http://dx.doi.org/10.1103/PhysRevLett.119.201103}{\prl 119 (2017) 201103}. \href{https://arxiv.org/abs/1708.03651}{arXiv:1708.03651 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{17.} & & \textit{Nutational resonances, transitional precession, and precession-averaged evolution in binary black-hole systems.}
\newline{}
X. Zhao, M. Kesden, \textbf{D. Gerosa}.
\newline{}
\href{http://dx.doi.org/10.1103/PhysRevD.96.024007}{\prd 96 (2017) 024007}. \href{https://arxiv.org/abs/1705.02369}{arXiv:1705.02369 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{16.} & & \textit{Inferences about supernova physics from gravitational-wave measurements: GW151226 spin misalignment as an indicator of strong black-hole natal kicks.}
\newline{}
R. O'Shaughnessy, \textbf{D. Gerosa}, D. Wysocki.
\newline{}
\href{http://dx.doi.org/10.1103/PhysRevLett.119.011101}{\prl 119 (2017) 011101}. \href{https://arxiv.org/abs/1704.03879}{arXiv:1704.03879 [gr-qc].}
\newline{}
\textcolor{color1}{$\bullet$} APS Editor's choice (physics.aps.org). Covered by press release.
\vspace{0.09cm}\\
%
\textbf{15.} & & \textit{Are merging black holes born from stellar collapse or previous mergers?.}
\newline{}
\textbf{D. Gerosa}, E. Berti.
\newline{}
\href{http://dx.doi.org/10.1103/PhysRevD.95.124046}{\prd 95 (2017) 124046}. \href{https://arxiv.org/abs/1703.06223}{arXiv:1703.06223 [gr-qc].}
\newline{}
\textcolor{color1}{$\bullet$} PRD Editors' Suggestion.
\vspace{0.09cm}\\
%
\textbf{14.} & & \textit{On the equal-mass limit of precessing black-hole binaries.}
\newline{}
\textbf{D. Gerosa}, U. Sperhake, J. Vo\v{s}mera.
\newline{}
\href{http://dx.doi.org/10.1088/1361-6382/aa5e58}{\cqg 34 (2017) 064004}. \href{https://arxiv.org/abs/1612.05263}{arXiv:1612.05263 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{13.} & & \textit{Black-hole kicks as new gravitational-wave observables.}
\newline{}
\textbf{D. Gerosa}, C. J. Moore.
\newline{}
\href{http://dx.doi.org/10.1103/PhysRevLett.117.011101}{\prl 117 (2016) 011101}. \href{https://arxiv.org/abs/1606.04226}{arXiv:1606.04226 [gr-qc].}
\newline{}
\textcolor{color1}{$\bullet$} PRL Editors' Suggestion. Covered by press release.
\vspace{0.09cm}\\
%
\textbf{12.} & & \textit{PRECESSION: Dynamics of spinning black-hole binaries with python.}
\newline{}
\textbf{D. Gerosa}, M. Kesden.
\newline{}
\href{http://dx.doi.org/10.1103/PhysRevD.93.124066}{\prd 93 (2016) 124066}. \href{https://arxiv.org/abs/1605.01067}{arXiv:1605.01067 [astro-ph.HE].}
\newline{}
\textcolor{color1}{$\bullet$} Open source code.
\vspace{0.09cm}\\
%
\textbf{11.} & & \textit{Numerical simulations of stellar collapse in scalar-tensor theories of gravity.}
\newline{}
\textbf{D. Gerosa}, U. Sperhake, C. D. Ott.
\newline{}
\href{http://dx.doi.org/10.1088/0264-9381/33/13/135002}{\cqg 33 (2016) 135002}. \href{https://arxiv.org/abs/1602.06952}{arXiv:1602.06952 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{10.} & & \textit{Distinguishing black-hole spin-orbit resonances by their gravitational wave signatures. II: Full parameter estimation.}
\newline{}
D. Trifir\`o, R. O'Shaughnessy, \textbf{D. Gerosa}, E. Berti, M. Kesden, T. Littenberg, U. Sperhake.
\newline{}
\href{http://dx.doi.org/10.1103/PhysRevD.93.044071}{\prd 93 (2016) 044071}. \href{https://arxiv.org/abs/1507.05587}{arXiv:1507.05587 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{9.} & & \textit{Precessional instability in binary black holes with aligned spins.}
\newline{}
\textbf{D. Gerosa}, M. Kesden, R. O'Shaughnessy, A. Klein, E. Berti, U. Sperhake, D. Trifir\`o.
\newline{}
\href{http://dx.doi.org/10.1103/PhysRevLett.115.141102}{\prl 115 (2015) 141102}. \href{https://arxiv.org/abs/1506.09116}{arXiv:1506.09116 [gr-qc].}
\newline{}
\textcolor{color1}{$\bullet$} PRL Editors' Suggestion.
\vspace{0.09cm}\\
%
\textbf{8.} & & \textit{Tensor-multi-scalar theories: relativistic stars and 3+1 decomposition.}
\newline{}
M. Horbatsch, H. O. Silva, \textbf{D. Gerosa}, P. Pani, E. Berti, L. Gualtieri, U. Sperhake.
\newline{}
\href{http://dx.doi.org/10.1088/0264-9381/32/20/204001}{\cqg 32 (2015) 204001}. \href{https://arxiv.org/abs/1505.07462}{arXiv:1505.07462 [gr-qc].}
\newline{}
\textcolor{color1}{$\bullet$} IoP Editor's choice (CQG+, IOPselect).
\vspace{0.09cm}\\
%
\textbf{7.} & & \textit{Multi-timescale analysis of phase transitions in precessing black-hole binaries.}
\newline{}
\textbf{D. Gerosa}, M. Kesden, U. Sperhake, E. Berti, R. O'Shaughnessy.
\newline{}
\href{http://dx.doi.org/10.1103/PhysRevD.92.064016}{\prd 92 (2015) 064016}. \href{https://arxiv.org/abs/1506.03492}{arXiv:1506.03492 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{6.} & & \textit{Spin alignment and differential accretion in merging black hole binaries.}
\newline{}
\textbf{D. Gerosa}, B. Veronesi, G. Lodato, G. Rosotti.
\newline{}
\href{http://dx.doi.org/10.1093/mnras/stv1214}{\mnras 451 (2015) 3941-3954}. \href{https://arxiv.org/abs/1503.06807}{arXiv:1503.06807 [astro-ph.GA].}
\vspace{0.09cm}\\
%
\textbf{5.} & & \textit{Effective potentials and morphological transitions for binary black-hole spin precession.}
\newline{}
M. Kesden, \textbf{D. Gerosa}, R. O'Shaughnessy, E. Berti, U. Sperhake.
\newline{}
\href{http://dx.doi.org/10.1103/PhysRevLett.114.081103}{\prl 114 (2015) 081103}. \href{https://arxiv.org/abs/1411.0674}{arXiv:1411.0674 [gr-qc].}
\newline{}
\textcolor{color1}{$\bullet$} Covered by press release.
\vspace{0.09cm}\\
%
\textbf{4.} & & \textit{Missing black holes in brightest cluster galaxies as evidence for the occurrence of superkicks in nature.}
\newline{}
\textbf{D. Gerosa}, A. Sesana.
\newline{}
\href{http://dx.doi.org/10.1093/mnras/stu2049}{\mnras 446 (2015) 38-55}. \href{https://arxiv.org/abs/1405.2072}{arXiv:1405.2072 [astro-ph.GA].}
\vspace{0.09cm}\\
%
\textbf{3.} & & \textit{Distinguishing black-hole spin-orbit resonances by their gravitational-wave signatures.}
\newline{}
\textbf{D. Gerosa}, R. O'Shaughnessy, M. Kesden, E. Berti, U. Sperhake.
\newline{}
\href{http://dx.doi.org/10.1103/PhysRevD.89.124025}{\prd 89 (2014) 124025}. \href{https://arxiv.org/abs/1403.7147}{arXiv:1403.7147 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{2.} & & \textit{Resonant-plane locking and spin alignment in stellar-mass black-hole binaries: a diagnostic of compact-binary formation.}
\newline{}
\textbf{D. Gerosa}, M. Kesden, E. Berti, R. O'Shaughnessy, U. Sperhake.
\newline{}
\href{http://dx.doi.org/10.1103/PhysRevD.87.104028}{\prd 87 (2013) 10, 104028}. \href{https://arxiv.org/abs/1302.4442}{arXiv:1302.4442 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{1.} & & \textit{Black hole mergers: do gas discs lead to spin alignment?.}
\newline{}
G. Lodato, \textbf{D. Gerosa}.
\newline{}
\href{http://dx.doi.org/10.1093/mnrasl/sls018}{\mnrasl 429 (2013) L30-L34}. \href{https://arxiv.org/abs/1211.0284}{arXiv:1211.0284 [astro-ph.CO].}
\vspace{0.09cm}\\
%
\end{longtable} }
\textcolor{color1}{\textbf{White papers, long-authorlist reviews, conference proceedings, software papers, etc.:}}
\vspace{-0.5cm}
\cvitem{}{\small\hspace{-1cm}\begin{longtable}{rp{0.3cm}p{15.8cm}}
%
\textbf{12.} & & \textit{Waveform modelling for the Laser Interferometer Space Antenna.}
\newline{}
N. Afshordi, et al. (105 authors incl. \textbf{D. Gerosa}).
\newline{}
\href{https://arxiv.org/abs/2311.01300}{arXiv:2311.01300 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{11.} & & \textit{QLUSTER: quick clusters of merging binary black holes.}
\newline{}
\textbf{D. Gerosa}, M. Mould.
\newline{}
\href{https://doi.org/10.58027/bsnq-2422}{Proceedings of the 57th Rencontres de Moriond}. \href{https://arxiv.org/abs/2305.04987}{arXiv:2305.04987 [astro-ph.HE].}
\newline{}
\textcolor{color1}{$\bullet$} Open source code.
\vspace{0.09cm}\\
%
\textbf{10.} & & \textit{Astrophysics with the Laser Interferometer Space Antenna.}
\newline{}
P. Amaro-Seoane, et al. (155 authors incl. \textbf{D. Gerosa}).
\newline{}
\href{https://link.springer.com/article/10.1007/s41114-022-00041-y}{\lrr 26 (2022) 2}. \href{https://arxiv.org/abs/2203.06016}{arXiv:2203.06016 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{9.} & & \textit{New horizons for fundamental physics with LISA.}
\newline{}
K. G. Arun, et al. (141 authors incl. \textbf{D. Gerosa}).
\newline{}
\href{https://doi.org/10.1007/s41114-022-00036-9}{\lrr 25 (2022) 4}. \href{https://arxiv.org/abs/2205.01597}{arXiv:2205.01597 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{8.} & & \textit{Prospects for fundamental physics with LISA.}
\newline{}
E. Barausse, et al. (320 authors incl. \textbf{D. Gerosa}).
\newline{}
\href{https://doi.org/10.1007/s10714-020-02691-1}{\grg 52 (2020) 8, 81}. \href{https://arxiv.org/abs/2001.09793}{arXiv:2001.09793 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{7.} & & \textit{Black holes, gravitational waves and fundamental physics: a roadmap.}
\newline{}
L. Barack, et al. (199 authors incl. \textbf{D. Gerosa}).
\newline{}
\href{https://iopscience.iop.org/article/10.1088/1361-6382/ab0587}{\cqg 36 (2019) 143001}. \href{https://arxiv.org/abs/1806.05195}{arXiv:1806.05195 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{6.} & & \textit{Reanalysis of LIGO black-hole coalescences with alternative prior assumptions.}
\newline{}
\textbf{D. Gerosa}, S. Vitale, C.-J. Haster, K. Chatziioannou, A. Zimmerman.
\newline{}
\href{https://doi.org/10.1017/S1743921318003587}{Proceedings of the International Astronomical Union 338 (2018) 22-28}. \href{https://arxiv.org/abs/1712.06635}{arXiv:1712.06635 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{5.} & & \textit{Surprises from the spins: astrophysics and relativity with detections of spinning black-hole mergers.}
\newline{}
\textbf{D. Gerosa}.
\newline{}
\href{http://dx.doi.org/10.1088/1742-6596/957/1/012014}{Journal of Physics: Conference Series 957 (2018) 1, 012014}. \href{https://arxiv.org/abs/1711.10038}{arXiv:1711.10038 [astro-ph.HE].}
\vspace{0.09cm}\\
%
\textbf{4.} & & \textit{filltex: Automatic queries to ADS and INSPIRE databases to fill LaTex bibliography.}
\newline{}
\textbf{D. Gerosa}, M. Vallisneri.
\newline{}
\href{http://dx.doi.org/10.21105/joss.00222}{Journal of Open Source Software 2 (2017) 13}.
\newline{}
\textcolor{color1}{$\bullet$} Open source code.
\vspace{0.09cm}\\
%
\textbf{3.} & & \textit{Testing general relativity with present and future astrophysical observations.}
\newline{}
E. Berti, et al. (53 authors incl. \textbf{D. Gerosa}).
\newline{}
\href{http://dx.doi.org/10.1088/0264-9381/32/24/243001}{\cqg 32 (2015) 243001. Topical Review}. \href{https://arxiv.org/abs/1501.07274}{arXiv:1501.07274 [gr-qc].}
\vspace{0.09cm}\\
%
\textbf{2.} & & \textit{Rival families: waveforms from resonant black-hole binaries as probes of their astrophysical formation history.}
\newline{}
\textbf{D. Gerosa}.
\newline{}
\href{http://dx.doi.org/10.1007/978-3-319-10488-1_12}{Astrophysics and Space Science Proceedings 40 (2015) 137-145}.
\vspace{0.09cm}\\
%
\textbf{1.} & & \textit{Spin alignment effects in black hole binaries.}
\newline{}
\textbf{D. Gerosa}.
\newline{}
\href{https://caltechcampuspubs.library.caltech.edu/2800/}{Caltech Undergraduate Research Journal (CURJ) 15:1 (2014) 17-26}.
\vspace{0.09cm}\\
%
\end{longtable} }