-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinference kim 2 (v.2 old w denoiser).py
569 lines (476 loc) · 21.5 KB
/
inference kim 2 (v.2 old w denoiser).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
# coding: utf-8
__author__ = 'https://github.com/ZFTurbo/'
if __name__ == '__main__':
import os
gpu_use = "0"
print('GPU use: {}'.format(gpu_use))
os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(gpu_use)
from tqdm import tqdm
import numpy as np
import torch
import torch.nn as nn
import os
import argparse
import soundfile as sf
from scipy.signal import firwin, lfilter
from demucs.states import load_model
from demucs import pretrained
from demucs.apply import apply_model
import onnxruntime as ort
from time import time
import librosa
import hashlib
from scipy.signal import firwin, lfilter
from scipy import signal
import sys
class Conv_TDF_net_trim_model(nn.Module):
def __init__(self, device, target_name, L, n_fft, hop=1024):
super(Conv_TDF_net_trim_model, self).__init__()
self.dim_c = 4
self.dim_f, self.dim_t = 3072, 256
self.n_fft = n_fft
self.hop = hop
self.n_bins = self.n_fft // 2 + 1
self.chunk_size = hop * (self.dim_t - 1)
self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(device)
self.target_name = target_name
out_c = self.dim_c * 4 if target_name == '*' else self.dim_c
self.freq_pad = torch.zeros([1, out_c, self.n_bins - self.dim_f, self.dim_t]).to(device)
self.n = L // 2
def stft(self, x):
x = x.reshape([-1, self.chunk_size])
x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True, return_complex=True)
x = torch.view_as_real(x)
x = x.permute([0, 3, 1, 2])
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, self.dim_c, self.n_bins, self.dim_t])
return x[:, :, :self.dim_f]
def istft(self, x, freq_pad=None):
freq_pad = self.freq_pad.repeat([x.shape[0], 1, 1, 1]) if freq_pad is None else freq_pad
x = torch.cat([x, freq_pad], -2)
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, 2, self.n_bins, self.dim_t])
x = x.permute([0, 2, 3, 1])
x = x.contiguous()
x = torch.view_as_complex(x)
x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True)
return x.reshape([-1, 2, self.chunk_size])
def forward(self, x):
x = self.first_conv(x)
x = x.transpose(-1, -2)
ds_outputs = []
for i in range(self.n):
x = self.ds_dense[i](x)
ds_outputs.append(x)
x = self.ds[i](x)
x = self.mid_dense(x)
for i in range(self.n):
x = self.us[i](x)
x *= ds_outputs[-i - 1]
x = self.us_dense[i](x)
x = x.transpose(-1, -2)
x = self.final_conv(x)
return x
def get_models(name, device, load=True, vocals_model_type=0):
if vocals_model_type == 2:
model_vocals = Conv_TDF_net_trim_model(
device=device,
target_name='vocals',
L=11,
n_fft=7680
)
elif vocals_model_type == 3:
model_vocals = Conv_TDF_net_trim_model(
device=device,
target_name='vocals',
L=11,
n_fft=6144
)
return [model_vocals]
def demix_base(mix, device, models, infer_session):
start_time = time()
sources = []
n_sample = mix.shape[1]
for model in models:
trim = model.n_fft // 2
gen_size = model.chunk_size - 2 * trim
pad = gen_size - n_sample % gen_size
mix_p = np.concatenate(
(
np.zeros((2, trim)),
mix,
np.zeros((2, pad)),
np.zeros((2, trim))
), 1
)
mix_waves = []
i = 0
while i < n_sample + pad:
waves = np.array(mix_p[:, i:i + model.chunk_size])
mix_waves.append(waves)
i += gen_size
mix_waves = np.array(mix_waves)
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(device)
with torch.no_grad():
_ort = infer_session
stft_res = model.stft(mix_waves)
res = _ort.run(None, {'input': stft_res.cpu().numpy()})[0]
ten = torch.tensor(res)
tar_waves = model.istft(ten.to(device))
tar_waves = tar_waves.cpu()
tar_signal = tar_waves[:, :, trim:-trim].transpose(0, 1).reshape(2, -1).numpy()[:, :-pad]
sources.append(tar_signal)
# print('Time demix base: {:.2f} sec'.format(time() - start_time))
return np.array(sources)
def demix_full(mix, device, chunk_size, models, infer_session, overlap=0.75):
start_time = time()
step = int(chunk_size * (1 - overlap))
# print('Initial shape: {} Chunk size: {} Step: {} Device: {}'.format(mix.shape, chunk_size, step, device))
result = np.zeros((1, 2, mix.shape[-1]), dtype=np.float32)
divider = np.zeros((1, 2, mix.shape[-1]), dtype=np.float32)
total = 0
for i in range(0, mix.shape[-1], step):
total += 1
start = i
end = min(i + chunk_size, mix.shape[-1])
# print('Chunk: {} Start: {} End: {}'.format(total, start, end))
mix_part = mix[:, start:end]
sources = demix_base(mix_part, device, models, infer_session)
# print(sources.shape)
result[..., start:end] += sources
divider[..., start:end] += 1
sources = result / divider
# print('Final shape: {} Overall time: {:.2f}'.format(sources.shape, time() - start_time))
return sources
class EnsembleDemucsMDXMusicSeparationModel:
"""
Doesn't do any separation just passes the input back as output
"""
def __init__(self, options):
"""
options - user options
"""
# print(options)
if torch.cuda.is_available():
device = 'cuda:0'
else:
device = 'cpu'
if 'cpu' in options:
if options['cpu']:
device = 'cpu'
print('Use device: {}'.format(device))
self.single_onnx = False
if 'single_onnx' in options:
if options['single_onnx']:
self.single_onnx = True
print('Use single vocal ONNX')
self.overlap_large = float(options['overlap_large'])
self.overlap_small = float(options['overlap_small'])
if self.overlap_large > 0.99:
self.overlap_large = 0.99
if self.overlap_large < 0.0:
self.overlap_large = 0.0
if self.overlap_small > 0.99:
self.overlap_small = 0.99
if self.overlap_small < 0.0:
self.overlap_small = 0.0
model_folder = os.path.dirname(os.path.realpath(__file__)) + '/models/'
remote_url = 'https://dl.fbaipublicfiles.com/demucs/hybrid_transformer/04573f0d-f3cf25b2.th'
model_path = model_folder + '04573f0d-f3cf25b2.th'
if not os.path.isfile(model_path):
torch.hub.download_url_to_file(remote_url, model_folder + '04573f0d-f3cf25b2.th')
model_vocals = load_model(model_path)
model_vocals.to(device)
self.model_vocals_only = model_vocals
self.models = []
self.weights_vocals = np.array([10, 1, 8, 9])
self.weights_bass = np.array([19, 4, 5, 8])
self.weights_drums = np.array([18, 2, 4, 9])
self.weights_other = np.array([14, 2, 5, 10])
model1 = pretrained.get_model('htdemucs_ft')
model1.to(device)
self.models.append(model1)
model2 = pretrained.get_model('htdemucs')
model2.to(device)
self.models.append(model2)
model3 = pretrained.get_model('htdemucs_6s')
model3.to(device)
self.models.append(model3)
model4 = pretrained.get_model('hdemucs_mmi')
model4.to(device)
self.models.append(model4)
if 0:
for model in self.models:
print(model.sources)
'''
['drums', 'bass', 'other', 'vocals']
['drums', 'bass', 'other', 'vocals']
['drums', 'bass', 'other', 'vocals', 'guitar', 'piano']
['drums', 'bass', 'other', 'vocals']
'''
if device == 'cpu':
chunk_size = 200000000
providers = ["CPUExecutionProvider"]
else:
chunk_size = 1000000
providers = ["CUDAExecutionProvider"]
if 'chunk_size' in options:
chunk_size = int(options['chunk_size'])
# MDX-B model 1 initialization
self.chunk_size = chunk_size
self.mdx_models1 = get_models('tdf_extra', load=False, device=device, vocals_model_type=2)
model_path_onnx1 = model_folder + 'Kim_Vocal_2.onnx'
remote_url_onnx1 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/Kim_Vocal_2.onnx'
if not os.path.isfile(model_path_onnx1):
torch.hub.download_url_to_file(remote_url_onnx1, model_path_onnx1)
print('Model path: {}'.format(model_path_onnx1))
print('Device: {} Chunk size: {}'.format(device, chunk_size))
self.infer_session1 = ort.InferenceSession(
model_path_onnx1,
providers=providers,
provider_options=[{"device_id": 0}],
)
if self.single_onnx is False:
# MDX-B model 2 initialization
self.chunk_size = chunk_size
self.mdx_models2 = get_models('tdf_extra', load=False, device=device, vocals_model_type=3)
root_path = os.path.dirname(os.path.realpath(__file__)) + '/'
model_path_onnx2 = model_folder + 'UVR_MDX_Instr_HQ3.onnx'
remote_url_onnx2 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/UVR-MDX-NET-Inst_HQ_3.onnx'
if not os.path.isfile(model_path_onnx2):
torch.hub.download_url_to_file(remote_url_onnx2, model_path_onnx2)
print('Model path: {}'.format(model_path_onnx2))
print('Device: {} Chunk size: {}'.format(device, chunk_size))
self.infer_session2 = ort.InferenceSession(
model_path_onnx2,
providers=providers,
provider_options=[{"device_id": 0}],
)
self.device = device
pass
@property
def instruments(self):
""" DO NOT CHANGE """
return ['bass', 'drums', 'other', 'vocals']
def raise_aicrowd_error(self, msg):
""" Will be used by the evaluator to provide logs, DO NOT CHANGE """
raise NameError(msg)
def separate_music_file(
self,
mixed_sound_array,
sample_rate,
update_percent_func=None,
current_file_number=0,
total_files=0,
):
"""
Implements the sound separation for a single sound file
Inputs: Outputs from soundfile.read('mixture.wav')
mixed_sound_array
sample_rate
Outputs:
separated_music_arrays: Dictionary numpy array of each separated instrument
output_sample_rates: Dictionary of sample rates separated sequence
"""
# print('Update percent func: {}'.format(update_percent_func))
separated_music_arrays = {}
output_sample_rates = {}
audio = np.expand_dims(mixed_sound_array.T, axis=0)
audio = torch.from_numpy(audio).type('torch.FloatTensor').to(self.device)
overlap_large = self.overlap_large
overlap_small = self.overlap_small
# Get Demics vocal only
print('Processing vocals, step 1...')
model = self.model_vocals_only
shifts = 1
overlap = overlap_large
vocals_demucs = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0][3].cpu().numpy()
if update_percent_func is not None:
val = 100 * (current_file_number + 0.10) / total_files
update_percent_func(int(val))
print('Processing vocals, step 2...')
vocals_demucs += 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0][3].cpu().numpy()
if update_percent_func is not None:
val = 100 * (current_file_number + 0.20) / total_files
update_percent_func(int(val))
print('Processing vocals, step 3...')
overlap = overlap_large
sources1 = demix_full(
mixed_sound_array.T,
self.device,
self.chunk_size,
self.mdx_models1,
self.infer_session1,
overlap=overlap
)[0]
vocals_mdxb1 = sources1 * 1.0074
if update_percent_func is not None:
val = 100 * (current_file_number + 0.30) / total_files
update_percent_func(int(val))
print('Processing vocals, step 4...')
if self.single_onnx is False:
sources2 = -demix_full(
-mixed_sound_array.T,
self.device,
self.chunk_size,
self.mdx_models2,
self.infer_session2,
overlap=overlap
)[0]
# it's instrumental so need to invert
instrum_mdxb2 = sources2
vocals_mdxb2 = mixed_sound_array.T - (instrum_mdxb2 * 1.022)
print('Processing vocals: DONE!')
if update_percent_func is not None:
val = 100 * (current_file_number + 0.40) / total_files
update_percent_func(int(val))
# Ensemble vocals for MDX and Demucs
if self.single_onnx is False:
weights = np.array([12, 8, 3])
vocals = (lr_filter((weights[0] * vocals_mdxb1.T + weights[1] * vocals_mdxb2.T + weights[2] * vocals_demucs.T) / weights.sum(), 14000, 'lowpass') + lr_filter(((vocals_mdxb2.T + vocals_demucs.T) / 2), 14000, 'highpass')) * 1.004
else:
weights = np.array([6, 1])
vocals = (weights[0] * vocals_mdxb1.T + weights[1] * vocals_demucs.T) / weights.sum()
# Generate instrumental
instrum = (mixed_sound_array - vocals) * 1.002
audio = np.expand_dims(instrum.T, axis=0)
audio = torch.from_numpy(audio).type('torch.FloatTensor').to(self.device)
all_outs = []
print('Demucs processing...')
for i, model in tqdm(enumerate(self.models), total=4):
if i == 0:
overlap = overlap_small
elif i > 0:
overlap = overlap_large
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy()
if update_percent_func is not None:
val = 100 * (current_file_number + 0.50 + i * 0.10) / total_files
update_percent_func(int(val))
if i == 2:
# ['drums', 'bass', 'other', 'vocals', 'guitar', 'piano']
out[2] = out[2] + out[4] + out[5]
out = out[:4]
out[0] = self.weights_drums[i] * out[0]
out[1] = self.weights_bass[i] * out[1] * 1.0045
out[2] = self.weights_other[i] * out[2]
out[3] = self.weights_vocals[i] * out[3]
all_outs.append(out)
out = np.array(all_outs).sum(axis=0)
out[0] = out[0] / self.weights_drums.sum()
out[1] = out[1] / self.weights_bass.sum()
out[2] = out[2] / self.weights_other.sum()
out[3] = out[3] / self.weights_vocals.sum()
# vocals
separated_music_arrays['vocals'] = vocals
output_sample_rates['vocals'] = sample_rate
# other
res = mixed_sound_array - vocals - out[0].T - out[1].T
res = np.clip(res, -1, 1)
separated_music_arrays['other'] = (2 * res + out[2].T) / 3.0
output_sample_rates['other'] = sample_rate
# drums
res = mixed_sound_array - vocals - out[1].T - out[2].T
res = np.clip(res, -1, 1)
separated_music_arrays['drums'] = (res + 2 * out[0].T.copy()) / 3.0
output_sample_rates['drums'] = sample_rate
# bass
res = mixed_sound_array - vocals - out[0].T - out[2].T
res = np.clip(res, -1, 1)
separated_music_arrays['bass'] = (res + 2 * out[1].T) / 3.0
output_sample_rates['bass'] = sample_rate
bass = separated_music_arrays['bass']
drums = separated_music_arrays['drums']
other = separated_music_arrays['other']
separated_music_arrays['other'] = mixed_sound_array - vocals - bass - drums
separated_music_arrays['drums'] = mixed_sound_array - vocals - bass - other
separated_music_arrays['bass'] = mixed_sound_array - vocals - drums - other
if update_percent_func is not None:
val = 100 * (current_file_number + 0.95) / total_files
update_percent_func(int(val))
return separated_music_arrays, output_sample_rates
def predict_with_model(options):
for input_audio in options['input_audio']:
if not os.path.isfile(input_audio):
print('Error. No such file: {}. Please check path!'.format(input_audio))
return
output_folder = options['output_folder']
if not os.path.isdir(output_folder):
os.mkdir(output_folder)
model = None
if 'large_gpu' in options:
if options['large_gpu'] is True:
print('Use fast large GPU memory version of code')
model = EnsembleDemucsMDXMusicSeparationModel(options)
if model is None:
print('Use low GPU memory version of code')
model = EnsembleDemucsMDXMusicSeparationModelLowGPU(options)
update_percent_func = None
if 'update_percent_func' in options:
update_percent_func = options['update_percent_func']
for i, input_audio in enumerate(options['input_audio']):
print('Go for: {}'.format(input_audio))
audio, sr = librosa.load(input_audio, mono=False, sr=44100)
if len(audio.shape) == 1:
audio = np.stack([audio, audio], axis=0)
print("Input audio: {} Sample rate: {}".format(audio.shape, sr))
result, sample_rates = model.separate_music_file(audio.T, sr, update_percent_func, i, len(options['input_audio']))
for instrum in model.instruments:
output_name = os.path.splitext(os.path.basename(input_audio))[0] + '_{}.wav'.format(instrum)
sf.write(output_folder + '/' + output_name, result[instrum], sample_rates[instrum], subtype='FLOAT')
print('File created: {}'.format(output_folder + '/' + output_name))
# instrumental part 1
inst = (audio.T - result['vocals']) * 1.002
output_name = os.path.splitext(os.path.basename(input_audio))[0] + '_{}.wav'.format('instrum')
sf.write(output_folder + '/' + output_name, inst, sr, subtype='FLOAT')
print('File created: {}'.format(output_folder + '/' + output_name))
# instrumental part 2
inst2 = (result['bass'] + result['drums'] + result['other']) * 1.004
output_name = os.path.splitext(os.path.basename(input_audio))[0] + '_{}.wav'.format('instrum2')
sf.write(output_folder + '/' + output_name, inst2, sr, subtype='FLOAT')
print('File created: {}'.format(output_folder + '/' + output_name))
if update_percent_func is not None:
val = 100
update_percent_func(int(val))
# lowpass filter
def lr_filter(audio, cutoff, filter_type, order=4, sr=44100):
audio = audio.T
nyquist = 0.5 * sr
normal_cutoff = cutoff / nyquist
b, a = signal.butter(order//2, normal_cutoff, btype=filter_type, analog=False)
filtered_audio = signal.filtfilt(b, a, audio)
return filtered_audio.T
def md5(fname):
hash_md5 = hashlib.md5()
with open(fname, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
if __name__ == '__main__':
start_time = time()
m = argparse.ArgumentParser()
m.add_argument("--input_audio", "-i", nargs='+', type=str, help="Input audio location. You can provide multiple files at once", required=True)
m.add_argument("--output_folder", "-r", type=str, help="Output audio folder", required=True)
m.add_argument("--cpu", action='store_true', help="Choose CPU instead of GPU for processing. Can be very slow.")
m.add_argument("--overlap_large", "-ol", type=float, help="Overlap of splited audio for light models. Closer to 1.0 - slower", required=False, default=0.6)
m.add_argument("--overlap_small", "-os", type=float, help="Overlap of splited audio for heavy models. Closer to 1.0 - slower", required=False, default=0.5)
m.add_argument("--single_onnx", action='store_true', help="Only use single ONNX model for vocals. Can be useful if you have not enough GPU memory.")
m.add_argument("--chunk_size", "-cz", type=int, help="Chunk size for ONNX models. Set lower to reduce GPU memory consumption. Default: 1000000", required=False, default=1000000)
m.add_argument("--large_gpu", action='store_true', help="It will store all models on GPU for faster processing of multiple audio files. Requires 11 and more GB of free GPU memory.")
#m.add_argument("--shifts", type=int, help="Managing the Demucs 'shift trick' value.", required=False, default=1)
#m.add_argument("--mixer", action='store_true', help="uyse MdxMixer post-processing", required=False, default=False)
options = m.parse_args().__dict__
print("Options: ".format(options))
for el in options:
print('{}: {}'.format(el, options[el]))
predict_with_model(options)
print('Time: {:.0f} sec'.format(time() - start_time))
print('Presented by https://mvsep.com')
"""
Example:
python inference.py
--input_audio mixture.wav mixture1.wav
--output_folder ./results/
--cpu
--overlap_large 0.25
--overlap_small 0.25
--chunk_size 500000
"""