You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
We finetune [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) using [LoRA](https://arxiv.org/abs/2106.09685) and [DeepSpeed](https://github.com/microsoft/DeepSpeed). We ran LoRA on two 40 GB A100 GPUs utilizing DeepSpeed.
4
+
5
+
See our [blog post](https://www.determined.ai/blog/lora-parameters) for our experiment results.
6
+
7
+
To get started, first install Determined on your local machine:
8
+
```bash
9
+
pip install determined
10
+
```
11
+
12
+
Then finetune with LoRA:
13
+
```bash
14
+
det e create lora.yaml .
15
+
```
16
+
17
+
You can view the actual training code in `finetune.py`.
18
+
19
+
20
+
## Configuration
21
+
22
+
Change configuration options in `lora.yaml`. Some important options are:
23
+
-`slots_per_trial`: the number of GPUs to use.
24
+
-`dataset_subset`: the difficulty subset to train on.
25
+
-`per_device_train_batch_size`: the batch size per GPU.
26
+
27
+
28
+
DeepSpeed configuration files are in the `ds_configs` folder.
29
+
30
+
31
+
## Contributors
32
+
33
+
- By [Sze Wai Yuen](https://github.com/szewaiyuen6)
34
+
- Built on `llm-finetuning` code by [Agnieszka Ciborowska](https://github.com/aciborowska) and [Kevin Musgrave](https://github.com/KevinMusgrave).
0 commit comments