-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathtrain.py
252 lines (209 loc) · 8.93 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
from argparse import ArgumentParser
import os
import time
import math
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.backends.cudnn as cudnn
import nets as models
import functions as fns
_NUM_CLASSES = 10
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
def adjust_learning_rate(optimizer, epoch, args):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1 ** (epoch // 50))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def get_avg(self):
return self.avg
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def compute_accuracy(output, target):
output = output.argmax(dim=1)
acc = 0.0
acc = torch.sum(target == output).item()
acc = acc/output.size(0)*100
return acc
def train(train_loader, model, criterion, optimizer, epoch, args):
batch_time = AverageMeter()
losses = AverageMeter()
acc = AverageMeter()
# switch to train mode
model.train()
print('===================================================================')
end = time.time()
for i, (images, target) in enumerate(train_loader):
target.unsqueeze_(1)
target_onehot = torch.FloatTensor(target.shape[0], _NUM_CLASSES)
target_onehot.zero_()
target_onehot.scatter_(1, target, 1)
target.squeeze_(1)
if not args.no_cuda:
images = images.cuda()
target_onehot = target_onehot.cuda()
target = target.cuda()
# compute output and loss
output = model(images)
loss = criterion(output, target_onehot)
# measure accuracy and record loss
batch_acc = compute_accuracy(output, target)
losses.update(loss.item(), images.size(0))
acc.update(batch_acc, images.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# Update statistics
estimated_time_remained = batch_time.get_avg()*(len(train_loader)-i-1)
fns.update_progress(i, len(train_loader),
ESA='{:8.2f}'.format(estimated_time_remained)+'s',
loss='{:4.2f}'.format(loss.item()),
acc='{:4.2f}%'.format(float(batch_acc))
)
print()
print('Finish epoch {}: time = {:8.2f}s, loss = {:4.2f}, acc = {:4.2f}%'.format(
epoch+1, batch_time.get_avg()*len(train_loader),
float(losses.get_avg()), float(acc.get_avg())))
print('===================================================================')
return
def eval(test_loader, model, args):
batch_time = AverageMeter()
acc = AverageMeter()
# switch to eval mode
model.eval()
end = time.time()
for i, (images, target) in enumerate(test_loader):
if not args.no_cuda:
images = images.cuda()
target = target.cuda()
output = model(images)
batch_acc = compute_accuracy(output, target)
acc.update(batch_acc, images.size(0))
batch_time.update(time.time() - end)
end = time.time()
# Update statistics
estimated_time_remained = batch_time.get_avg()*(len(test_loader)-i-1)
fns.update_progress(i, len(test_loader),
ESA='{:8.2f}'.format(estimated_time_remained)+'s',
acc='{:4.2f}'.format(float(batch_acc))
)
print()
print('Test accuracy: {:4.2f}% (time = {:8.2f}s)'.format(
float(acc.get_avg()), batch_time.get_avg()*len(test_loader)))
print('===================================================================')
return float(acc.get_avg())
if __name__ == '__main__':
# Parse the input arguments.
arg_parser = ArgumentParser()
arg_parser.add_argument('data', metavar='DIR', help='path to dataset')
arg_parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
arg_parser.add_argument('--epochs', default=150, type=int, metavar='N',
help='number of total epochs to run (default: 150)')
arg_parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
arg_parser.add_argument('-a', '--arch', metavar='ARCH', default='alexnet',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: alexnet)')
arg_parser.add_argument('-b', '--batch-size', default=128, type=int,
metavar='N',
help='batch size (default: 128)')
arg_parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate (defult: 0.1)', dest='lr')
arg_parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum (default: 0.9)')
arg_parser.add_argument('--wd', '--weight-decay', default=5e-4, type=float,
metavar='W', help='weight decay (default: 5e-4)',
dest='weight_decay')
arg_parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
arg_parser.add_argument('--dir', type=str, default='models/', dest='save_dir',
help='path to save models (default: models/')
arg_parser.add_argument('--no-cuda', action='store_true', default=False, dest='no_cuda',
help='disables training on GPU')
args = arg_parser.parse_args()
print(args)
path = os.path.dirname(args.save_dir)
if not os.path.exists(path):
os.makedirs(path)
print('Create new directory `{}`'.format(path))
# Data loader
train_dataset = datasets.CIFAR10(root=args.data, train=True, download=True,
transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.Resize(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
]))
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
test_dataset = datasets.CIFAR10(root=args.data, train=False, download=True,
transform=transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
]))
test_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
# Network
cudnn.benchmark = True
num_classes = _NUM_CLASSES
model_arch = args.arch
model = models.__dict__[model_arch](num_classes=num_classes)
criterion = nn.BCEWithLogitsLoss()
if not args.no_cuda:
model = model.cuda()
criterion = criterion.cuda()
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("Loading checkpoint '{}'".format(args.resume))
model = torch.load(args.resume)
else:
print("No checkpoint found at '{}'".format(args.resume))
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# Train & evaluation
best_acc = 0
filename = os.path.join(args.save_dir)
for epoch in range(args.start_epoch, args.epochs):
print('Epoch [{}/{}]'.format(epoch+1, args.epochs - args.start_epoch))
adjust_learning_rate(optimizer, epoch, args)
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch, args)
acc = eval(test_loader, model, args)
if acc > best_acc:
torch.save(model, filename)
best_acc = acc
print('Save model: ' + filename)
print(' ')
print('Best accuracy:', best_acc)
model = torch.load(filename)
print(model)
best_acc = eval(test_loader, model, args)
print('Best accuracy:', best_acc)