-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathintersection_pseudo.py
127 lines (98 loc) · 4.54 KB
/
intersection_pseudo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
import argparse
import numpy as np
import matplotlib.pyplot as plt
def plot_pseudo_labels(save_path, num_classes, *labels):
num_pics = len(labels) + 1
color_map = plt.get_cmap('turbo').copy()
color_map.set_under('w')
fig = plt.figure(figsize=(15, num_pics*1.5))
barprops = dict(aspect='auto', cmap=color_map, interpolation='nearest', vmin=0, vmax=num_classes-1)
# dic = {1:'(a)', 2:'(b)', 3:'(c)', 4:'(d)', 5:'(e)', 6:'(f)'}
for i, label in enumerate(labels):
plt.subplot(num_pics, 1, i + 1)
plt.xticks([])
plt.yticks([])
# plt.ylabel(dic[i+1]+' ', rotation = 0, size=20)
plt.imshow([label], **barprops)
if save_path is not None:
plt.savefig(save_path)
else:
plt.show()
plt.close()
def eval_pseudo_labels(pseudo_labels, gt_labels):
true_num = np.sum(pseudo_labels == gt_labels)
pseudo_num = len(gt_labels) - np.sum(pseudo_labels == -1)
return true_num, pseudo_num
def intersection_labels(*labels):
assert len(labels) >= 2
out_labels = np.zeros_like(labels[0]) - 1
out_labels[labels[0]==labels[1]] = labels[0][labels[0]==labels[1]]
for i in range(2, len(labels)):
out_labels[~(out_labels==labels[i])] = -1
return out_labels
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default="50salads", help='three dataset: breakfast, 50salads, gtea')
parser.add_argument('--type', default="all", help='all, energy_function, constrained_k_medoids, agglomerative_clustering, constrained_agens')
args = parser.parse_args()
dataset_name = args.dataset #'gtea' #'50salads'
sample_rate = 1
if dataset_name == "50salads":
sample_rate = 2
pseudo_label_dir1 = "data/I3D_1024/"+dataset_name+"/"
pseudo_label_dir2 = "data/I3D_2048/"+dataset_name+"/"
pseudo_label_dir = "data/I3D_merge/"+dataset_name+"/"
if not os.path.exists(pseudo_label_dir):
os.makedirs(pseudo_label_dir)
# read action dict
file_ptr = open("data/" + dataset_name + "/mapping.txt", 'r')
actions = file_ptr.read().split('\n')[:-1]
file_ptr.close()
actions_dict = dict()
reverse_dict = dict()
for a in actions:
actions_dict[a.split()[1]] = int(a.split()[0])
reverse_dict[int(a.split()[0])] = a.split()[1]
reverse_dict[-1] = 'no_label'
random_index = np.load("data/" + dataset_name + "_annotation_all.npy", allow_pickle=True).item()
total_true = 0
total_pseudo = 0
total_length = 0
# process each video
for vid, stamp in random_index.items():
# read labels
file_ptr = open("data/" + dataset_name + "/groundTruth/" + vid, 'r')
content = file_ptr.read().split('\n')[:-1]
file_ptr.close()
classes = np.zeros(len(content))
for i in range(len(classes)):
classes[i] = actions_dict[content[i]]
classes = classes[::sample_rate]
file_ptr = open(pseudo_label_dir1 + vid, 'r')
content = file_ptr.read().split('\n')[:-1]
output_classes1 = np.zeros(len(content)) - 1
for i in range(len(content)):
output_classes1[i] = actions_dict.get(content[i], -1)
file_ptr.close()
file_ptr = open(pseudo_label_dir2 + vid, 'r')
content = file_ptr.read().split('\n')[:-1]
output_classes2 = np.zeros(len(content)) - 1
for i in range(len(content)):
output_classes2[i] = actions_dict.get(content[i], -1)
file_ptr.close()
output_classes = intersection_labels(output_classes1, output_classes2)
true_num, pseudo_num = eval_pseudo_labels(output_classes, classes)
print(vid.split('.')[0] + " true num: {}, pseudo labels num: {}, length: {}, stop iter: {}".format(true_num, pseudo_num, len(classes), 0))
total_true += true_num
total_pseudo += pseudo_num
total_length += len(classes)
# save pseudo label
file_ptr = open(pseudo_label_dir+vid, 'w')
for each in output_classes:
file_ptr.write(reverse_dict[each] + '\n')
file_ptr.close()
plot_pseudo_labels(pseudo_label_dir+vid.split('.')[0]+'.pdf', len(actions_dict), classes, output_classes)
# plot_pseudo_labels(pseudo_label_dir+vid.split('.')[0]+'.pdf', len(actions_dict), classes, ts_only(stamp,features,classes)[0], output_classes1, output_classes2, output_classes3, output_classes)
print("label rate: {}".format(total_pseudo/float(total_length)))
print("label acc: {}".format(total_true/float(total_pseudo)))