forked from llvm/llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSparseTensorPipelines.cpp
120 lines (107 loc) · 5.29 KB
/
SparseTensorPipelines.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
//===- SparseTensorPipelines.cpp - Pipelines for sparse tensor code -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/Passes.h"
#include "mlir/Dialect/Arith/Transforms/Passes.h"
#include "mlir/Dialect/Bufferization/Transforms/Passes.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/GPU/Transforms/Passes.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/MemRef/Transforms/Passes.h"
#include "mlir/Dialect/SparseTensor/Pipelines/Passes.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Transforms/Passes.h"
//===----------------------------------------------------------------------===//
// Pipeline implementation.
//===----------------------------------------------------------------------===//
void mlir::sparse_tensor::buildSparsifier(OpPassManager &pm,
const SparsifierOptions &options) {
// Rewrite named linalg ops into generic ops and apply fusion.
pm.addNestedPass<func::FuncOp>(createLinalgGeneralizeNamedOpsPass());
pm.addNestedPass<func::FuncOp>(createLinalgElementwiseOpFusionPass());
// Sparsification and bufferization mini-pipeline.
pm.addPass(createSparsificationAndBufferizationPass(
getBufferizationOptionsForSparsification(
options.testBufferizationAnalysisOnly),
options.sparsificationOptions(), options.createSparseDeallocs,
options.enableRuntimeLibrary, options.enableBufferInitialization,
options.vectorLength,
/*enableVLAVectorization=*/options.armSVE,
/*enableSIMDIndex32=*/options.force32BitVectorIndices,
options.enableGPULibgen,
options.sparsificationOptions().sparseEmitStrategy,
options.sparsificationOptions().parallelizationStrategy));
// Bail-early for test setup.
if (options.testBufferizationAnalysisOnly)
return;
// Storage specifier lowering and bufferization wrap-up.
pm.addPass(createStorageSpecifierToLLVMPass());
pm.addNestedPass<func::FuncOp>(createCanonicalizerPass());
// GPU code generation.
const bool gpuCodegen = options.gpuTriple.hasValue();
if (gpuCodegen) {
pm.addPass(createSparseGPUCodegenPass());
pm.addNestedPass<gpu::GPUModuleOp>(createStripDebugInfoPass());
pm.addNestedPass<gpu::GPUModuleOp>(createConvertSCFToCFPass());
pm.addNestedPass<gpu::GPUModuleOp>(createConvertGpuOpsToNVVMOps());
}
// Progressively lower to LLVM. Note that the convert-vector-to-llvm
// pass is repeated on purpose.
// TODO(springerm): Add sparse support to the BufferDeallocation pass and add
// it to this pipeline.
pm.addNestedPass<func::FuncOp>(createConvertLinalgToLoopsPass());
pm.addNestedPass<func::FuncOp>(createConvertVectorToSCFPass());
pm.addNestedPass<func::FuncOp>(memref::createExpandReallocPass());
pm.addNestedPass<func::FuncOp>(createConvertSCFToCFPass());
pm.addPass(memref::createExpandStridedMetadataPass());
pm.addPass(createLowerAffinePass());
pm.addPass(
createConvertVectorToLLVMPass(options.convertVectorToLLVMOptions()));
pm.addPass(createFinalizeMemRefToLLVMConversionPass());
pm.addNestedPass<func::FuncOp>(createConvertComplexToStandardPass());
pm.addNestedPass<func::FuncOp>(arith::createArithExpandOpsPass());
pm.addNestedPass<func::FuncOp>(createConvertMathToLLVMPass());
pm.addPass(createConvertMathToLibmPass());
pm.addPass(createConvertComplexToLibmPass());
pm.addPass(
createConvertVectorToLLVMPass(options.convertVectorToLLVMOptions()));
pm.addPass(createConvertComplexToLLVMPass());
pm.addPass(
createConvertVectorToLLVMPass(options.convertVectorToLLVMOptions()));
pm.addPass(createConvertFuncToLLVMPass());
pm.addPass(createArithToLLVMConversionPass());
pm.addPass(createConvertControlFlowToLLVMPass());
// Finalize GPU code generation.
if (gpuCodegen) {
GpuNVVMAttachTargetOptions nvvmTargetOptions;
nvvmTargetOptions.triple = options.gpuTriple;
nvvmTargetOptions.chip = options.gpuChip;
nvvmTargetOptions.features = options.gpuFeatures;
pm.addPass(createGpuNVVMAttachTarget(nvvmTargetOptions));
pm.addPass(createGpuToLLVMConversionPass());
GpuModuleToBinaryPassOptions gpuModuleToBinaryPassOptions;
gpuModuleToBinaryPassOptions.compilationTarget = options.gpuFormat;
pm.addPass(createGpuModuleToBinaryPass(gpuModuleToBinaryPassOptions));
}
// Convert poison values.
pm.addPass(createUBToLLVMConversionPass());
// Ensure all casts are realized.
pm.addPass(createReconcileUnrealizedCastsPass());
}
//===----------------------------------------------------------------------===//
// Pipeline registration.
//===----------------------------------------------------------------------===//
void mlir::sparse_tensor::registerSparseTensorPipelines() {
PassPipelineRegistration<SparsifierOptions>(
"sparsifier",
"The standard pipeline for taking sparsity-agnostic IR using the"
" sparse-tensor type, and lowering it to LLVM IR with concrete"
" representations and algorithms for sparse tensors.",
buildSparsifier);
}