-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
26 lines (20 loc) · 797 Bytes
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
from dataset import CelebaDataset
from torch.utils.data import DataLoader
from utils import show_images, show_tensor_image, forward_diffusion_sample
from config import IMG_SIZE, BATCH_SIZE, T, LR
from torchvision import transforms
import torch
import matplotlib.pyplot as plt
from unet import SimpleUnet
# show_images(data)
data_transforms = [
transforms.Resize((IMG_SIZE, IMG_SIZE)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(), # Scales data into [0,1]
transforms.Lambda(lambda t: (t * 2) - 1) # Scale between [-1, 1]
]
data_transform = transforms.Compose(data_transforms)
dataset = CelebaDataset(transform=data_transform)
dataloader= DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True, drop_last=True)
# Simulate forward diffusion
model = SimpleUnet()