在 autodl 平台中租赁一个 3090 等 24G 显存的显卡机器,如下图所示镜像选择 PyTorch-->2.0.0-->3.8(ubuntu20.04)-->11.8
接下来打开刚刚租用服务器的 JupyterLab,并且打开其中的终端开始环境配置、模型下载和运行 demo。
pip 换源加速下载并安装依赖包
# 升级pip
python -m pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
pip install modelscope==1.9.5
pip install "transformers>=4.32.0" accelerate tiktoken einops scipy transformers_stream_generator==0.0.4 peft deepspeed
pip install -U huggingface_hub
在已完成 Yi-6B-chat 部署的基础上,我们还需要还需要安装以下依赖包。 请在终端复制粘贴以下命令,并回车运行:
pip install langchain==0.0.292
pip install gradio==4.4.0
pip install chromadb==0.4.15
pip install sentence-transformers==2.2.2
pip install unstructured==0.10.30
pip install markdown==3.3.7
同时,我们还需要使用到开源词向量模型 Sentence Transformer 。
这里使用 huggingface 镜像下载到本地 /root/autodl-tmp/embedding_model,你也可以选择其它的方式下载。
在 /root/autodl-tmp 路径下新建 download.py 文件并在其中输入以下内容,粘贴代码后请及时保存文件,如下图所示。并运行 python /root/autodl-tmp/download.py
执行下载。
import os
# 设置环境变量
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
# 下载模型
os.system('huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/autodl-tmp/embedding_model')
使用 modelscope 中的 snapshot_download 函数下载模型,第一个参数为模型名称,参数 cache_dir 为模型的下载路径。
在 /root/autodl-tmp 路径下新建 model_download.py 文件并在其中输入以下内容,粘贴代码后记得保存文件,如下图所示。并运行 python /root/autodl-tmp/model_download.py
执行下载,模型大小为 11 GB,下载模型大概需要 8~15 分钟。
import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('01ai/Yi-6B-Chat', cache_dir='/root/autodl-tmp', revision='master')
我们选用以下开源仓库作为知识库来源:
首先我们需要将上述远程开源仓库 Clone 到本地,可以使用以下命令:
# 进入到数据库盘
cd /root/autodl-tmp
# 打开学术资源加速
source /etc/network_turbo
# clone 开源仓库
git clone https://github.com/Joe-2002/sweettalk-django4.2.git
# 关闭学术资源加速
unset http_proxy && unset https_proxy
接着,为语料处理方便,我们将选用上述仓库中所有的 markdown、txt 文件作为示例语料库。注意,也可以选用其中的代码文件加入到知识库中,但需要针对代码文件格式进行额外处理。
我们首先将上述仓库中所有满足条件的文件路径找出来,我们定义一个函数,该函数将递归指定文件夹路径,返回其中所有满足条件(即后缀名为 .md 或者 .txt 的文件)的文件路径:
import os
def get_files(dir_path):
# args:dir_path,目标文件夹路径
file_list = []
for filepath, dirnames, filenames in os.walk(dir_path):
# os.walk 函数将递归遍历指定文件夹
for filename in filenames:
# 通过后缀名判断文件类型是否满足要求
if filename.endswith(".md"):
# 如果满足要求,将其绝对路径加入到结果列表
file_list.append(os.path.join(filepath, filename))
elif filename.endswith(".txt"):
file_list.append(os.path.join(filepath, filename))
return file_list
得到所有目标文件路径之后,我们可以使用 LangChain 提供的 FileLoader 对象来加载目标文件,得到由目标文件解析出的纯文本内容。由于不同类型的文件需要对应不同的 FileLoader,我们判断目标文件类型,并针对性调用对应类型的 FileLoader,同时,调用 FileLoader 对象的 load 方法来得到加载之后的纯文本对象:
from tqdm import tqdm
from langchain.document_loaders import UnstructuredFileLoader
from langchain.document_loaders import UnstructuredMarkdownLoader
def get_text(dir_path):
# args:dir_path,目标文件夹路径
# 首先调用上文定义的函数得到目标文件路径列表
file_lst = get_files(dir_path)
# docs 存放加载之后的纯文本对象
docs = []
# 遍历所有目标文件
for one_file in tqdm(file_lst):
file_type = one_file.split('.')[-1]
if file_type == 'md':
loader = UnstructuredMarkdownLoader(one_file)
elif file_type == 'txt':
loader = UnstructuredFileLoader(one_file)
else:
# 如果是不符合条件的文件,直接跳过
continue
docs.extend(loader.load())
return docs
使用上文函数,我们得到的 docs 为一个纯文本对象对应的列表。
docs = get_text('/root/autodl-tmp/sweettalk-django4.2')
得到该列表之后,我们就可以将它引入到 LangChain 框架中构建向量数据库。由纯文本对象构建向量数据库,我们需要先对文本进行分块,接着对文本块进行向量化。
LangChain 提供了多种文本分块工具,此处我们使用字符串递归分割器,并选择分块大小为 500,块重叠长度为 150:
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500, chunk_overlap=150)
split_docs = text_splitter.split_documents(docs)
接着我们选用开源词向量模型 Sentence Transformer 来进行文本向量化。
LangChain 提供了直接引入 HuggingFace 开源社区中的模型进行向量化的接口:
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
embeddings = HuggingFaceEmbeddings(model_name="/root/autodl-tmp/embedding_model")
同时,我们选择 Chroma 作为向量数据库,基于上文分块后的文档以及加载的开源向量化模型,将语料加载到指定路径下的向量数据库:
from langchain.vectorstores import Chroma
# 定义持久化路径
persist_directory = 'data_base/vector_db/chroma'
# 加载数据库
vectordb = Chroma.from_documents(
documents=split_docs,
embedding=embeddings,
persist_directory=persist_directory # 允许我们将persist_directory目录保存到磁盘上
)
# 将加载的向量数据库持久化到磁盘上
vectordb.persist()
将上述代码整合在一起为知识库搭建的脚本:
# 首先导入所需第三方库
from langchain.document_loaders import UnstructuredFileLoader
from langchain.document_loaders import UnstructuredMarkdownLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from tqdm import tqdm
import os
# 获取文件路径函数
def get_files(dir_path):
# args:dir_path,目标文件夹路径
file_list = []
for filepath, dirnames, filenames in os.walk(dir_path):
# os.walk 函数将递归遍历指定文件夹
for filename in filenames:
# 通过后缀名判断文件类型是否满足要求
if filename.endswith(".md"):
# 如果满足要求,将其绝对路径加入到结果列表
file_list.append(os.path.join(filepath, filename))
elif filename.endswith(".txt"):
file_list.append(os.path.join(filepath, filename))
return file_list
# 加载文件函数
def get_text(dir_path):
# args:dir_path,目标文件夹路径
# 首先调用上文定义的函数得到目标文件路径列表
file_lst = get_files(dir_path)
# docs 存放加载之后的纯文本对象
docs = []
# 遍历所有目标文件
for one_file in tqdm(file_lst):
file_type = one_file.split('.')[-1]
if file_type == 'md':
loader = UnstructuredMarkdownLoader(one_file)
elif file_type == 'txt':
loader = UnstructuredFileLoader(one_file)
else:
# 如果是不符合条件的文件,直接跳过
continue
docs.extend(loader.load())
return docs
# 目标文件夹
tar_dir = [
"/root/autodl-tmp/sweettalk-django4.2",
]
# 加载目标文件
docs = []
for dir_path in tar_dir:
docs.extend(get_text(dir_path))
# 对文本进行分块
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500, chunk_overlap=150)
split_docs = text_splitter.split_documents(docs)
# 加载开源词向量模型
embeddings = HuggingFaceEmbeddings(model_name="/root/autodl-tmp/embedding_model")
# 构建向量数据库
# 定义持久化路径
persist_directory = 'data_base/vector_db/chroma'
# 加载数据库
vectordb = Chroma.from_documents(
documents=split_docs,
embedding=embeddings,
persist_directory=persist_directory # 允许我们将persist_directory目录保存到磁盘上
)
# 将加载的向量数据库持久化到磁盘上
vectordb.persist()
运行上述脚本,即可在本地构建已持久化的向量数据库,后续直接导入该数据库即可,无需重复构建。
为便捷构建 LLM 应用,我们需要基于本地部署的 YiLM,自定义一个 LLM 类,将 Yi 接入到 LangChain 框架中。完成自定义 LLM 类之后,可以以完全一致的方式调用 LangChain 的接口,而无需考虑底层模型调用的不一致。
基于本地部署的 Yi 自定义 LLM 类并不复杂,我们只需从 LangChain.llms.base.LLM 类继承一个子类,并重写构造函数与 _call 函数即可:
from langchain.llms.base import LLM
from typing import Any, List, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, LlamaTokenizerFast
import torch
class Yi_LLM(LLM):
# 基于本地 Yi 自定义 LLM 类
tokenizer: AutoTokenizer = None
model: AutoModelForCausalLM = None
def __init__(self, mode_name_or_path :str):
super().__init__()
print("正在从本地加载模型...")
self.tokenizer = AutoTokenizer.from_pretrained(mode_name_or_path, trust_remote_code=True, use_fast=False)
self.model = AutoModelForCausalLM.from_pretrained(mode_name_or_path, trust_remote_code=True,torch_dtype=torch.bfloat16,device_map="auto")
self.model.generation_config = GenerationConfig.from_pretrained(mode_name_or_path)
self.model.generation_config.pad_token_id = self.model.generation_config.eos_token_id
self.model = self.model.eval()
print("完成本地模型的加载")
def _call(self, prompt : str, stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any):
messages = [
{"role": "user", "content": prompt }
]
input_ids = self.tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = self.model.generate(input_ids.to('cuda'))
response = self.tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
return response
@property
def _llm_type(self) -> str:
return "Yi_LLM"
在上述类定义中,我们分别重写了构造函数和 _call 函数:对于构造函数,我们在对象实例化的一开始加载本地部署的 Yi 模型,从而避免每一次调用都需要重新加载模型带来的时间过长;_call 函数是 LLM 类的核心函数,LangChain 会调用该函数来调用 LLM,在该函数中,我们调用已实例化模型的 generate 方法,从而实现对模型的调用并返回调用结果。
在整体项目中,我们将上述代码封装为 LLM.py,后续将直接从该文件中引入自定义的 LLM 类。
LangChain 通过提供检索问答链对象来实现对于 RAG 全流程的封装。即我们可以调用一个 LangChain 提供的 RetrievalQA 对象,通过初始化时填入已构建的数据库和自定义 LLM 作为参数,来简便地完成检索增强问答的全流程,LangChain 会自动完成基于用户提问进行检索、获取相关文档、拼接为合适的 Prompt 并交给 LLM 问答的全部流程。
首先我们需要将上文构建的向量数据库导入进来,我们可以直接通过 Chroma 以及上文定义的词向量模型来加载已构建的数据库:
from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
import os
# 定义 Embeddings
embeddings = HuggingFaceEmbeddings(model_name="/root/autodl-tmp/embedding_model")
# 向量数据库持久化路径
persist_directory = 'data_base/vector_db/chroma'
# 加载数据库
vectordb = Chroma(
persist_directory=persist_directory,
embedding_function=embeddings
)
上述代码得到的 vectordb 对象即为我们已构建的向量数据库对象,该对象可以针对用户的 query 进行语义向量检索,得到与用户提问相关的知识片段。
接着,我们实例化一个基于 Yi 自定义的 LLM 对象:
from LLM import Yi_LLM
llm = Yi_LLM(mode_name_or_path = "/root/autodl-tmp/01ai/Yi-6B-Chat")
llm("你是谁")
构建检索问答链,还需要构建一个 Prompt Template,该 Template 其实基于一个带变量的字符串,在检索之后,LangChain 会将检索到的相关文档片段填入到 Template 的变量中,从而实现带知识的 Prompt 构建。我们可以基于 LangChain 的 Template 基类来实例化这样一个 Template 对象:
from langchain.prompts import PromptTemplate
# 我们所构造的 Prompt 模板
template = """使用以下上下文来回答最后的问题。如果你不知道答案,就说你不知道,不要试图编造答案。尽量使答案简明扼要。总是在回答的最后说“谢谢你的提问!”。
{context}
问题: {question}
有用的回答:"""
# 调用 LangChain 的方法来实例化一个 Template 对象,该对象包含了 context 和 question 两个变量,在实际调用时,这两个变量会被检索到的文档片段和用户提问填充
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context","question"],template=template)
最后,可以调用 LangChain 提供的检索问答链构造函数,基于我们的自定义 LLM、Prompt Template 和向量知识库来构建一个基于 Yi 的检索问答链:
from langchain.chains import RetrievalQA
qa_chain = RetrievalQA.from_chain_type(llm,retriever=vectordb.as_retriever(),return_source_documents=True,chain_type_kwargs={"prompt":QA_CHAIN_PROMPT})
得到的 qa_chain 对象即可以实现我们的核心功能,即基于 Yi 模型的专业知识库助手。我们可以对比该检索问答链和纯 LLM 的问答效果:
question = "sweettalk_django项目是什么"
result = qa_chain({"query": question})
print("检索问答链回答 question 的结果:")
print(result["result"])
print("-------------------")
# 仅 LLM 回答效果
result_2 = llm(question)
print("大模型回答 question 的结果:")
print(result_2)