diff --git a/tutorials/basic-usage-of-jupyter-mlflow-and-prefect.md b/tutorials/basic-usage-of-jupyter-mlflow-and-prefect.md index 4f5ca03f..646d4e3f 100644 --- a/tutorials/basic-usage-of-jupyter-mlflow-and-prefect.md +++ b/tutorials/basic-usage-of-jupyter-mlflow-and-prefect.md @@ -155,7 +155,7 @@ Now train the model twice more - first with the default parameters, and then wit ```python train_model(data, mlflow_experiment_id=1, alpha=0.3, l1_ratio=0.3) -train_model(data, mlflow_experiment_id=1, alpha=0.3, l1_ratio=0.3) +train_model(data, mlflow_experiment_id=1, alpha=0.5, l1_ratio=0.5) ``` ![](./images/mlflow-results.png) diff --git a/tutorials/deploy-model-seldon.md b/tutorials/deploy-model-seldon.md index 7e0b8371..9b7bd5c0 100644 --- a/tutorials/deploy-model-seldon.md +++ b/tutorials/deploy-model-seldon.md @@ -230,7 +230,8 @@ Note that we leave the `model_uri` as an argument, so that we can specify this e ```python @task -def deploy_model(model_uri: str, namespace: str = "seldon"): logger = prefect.context.get("logger") +def deploy_model(model_uri: str, namespace: str = "seldon"): + logger = prefect.context.get("logger") logger.info(f"Deploying model {model_uri} to enviroment {namespace}") @@ -302,6 +303,7 @@ api_request = requests.post( headers={"Authorization": f"Bearer {token}"}, timeout=600 ) +``` ## Deploying the model via the Prefect UI