Skip to content

Latest commit

 

History

History
193 lines (136 loc) · 6.88 KB

README.md

File metadata and controls

193 lines (136 loc) · 6.88 KB

RsaCtfTool

Test lint_python CodeQL GitHub issues GitHub forks GitHub stars Rawsec's CyberSecurity Inventory GitHub license

RSA multi attacks tool : uncipher data from weak public key and try to recover private key Automatic selection of best attack for the given public key

Attacks :

  • Weak public key factorization

  • Wiener's attack

  • Hastad's attack (Small public exponent attack)

  • Small q (q < 100,000)

  • Common factor between ciphertext and modulus attack

  • Fermat's factorisation for close p and q

  • Gimmicky Primes method

  • Past CTF Primes method

  • Non RSA key in the form b^x, where b is prime

  • Self-Initializing Quadratic Sieve (SIQS) using Yafu (https://github.com/DarkenCode/yafu.git)

  • Common factor attacks across multiple keys

  • Small fractions method when p/q is close to a small fraction

  • Boneh Durfee Method when the private exponent d is too small compared to the modulus (i.e d < n^0.292)

  • Elliptic Curve Method

  • Pollards p-1 for relatively smooth numbers

  • Mersenne primes factorization

  • Factordb

  • Londahl

  • Noveltyprimes

  • Partial q

  • Primefac

  • Qicheng

  • Same n, huge e

  • binary polynomial factoring

  • Euler method

  • Pollard Rho

  • Wolfram alpha

  • cm-factor

  • z3 theorem prover

  • Primorial pm1 gcd

  • Mersenne pm1 gcd

  • Fermat Numbers gcd

  • Fibonacci gcd

  • System primes gcd

  • Small crt exponent

  • Shanks's square forms factorization (SQUFOF)

  • Return of Coppersmith's attack (ROCA) with NECA variant

  • Dixon

  • brent (Pollard rho variant)

  • Pisano Period

  • NSIF Vulnerability, Power Modular Factorization, Near Power Factors

Usage

usage: RsaCtfTool.py [-h] [--publickey PUBLICKEY] [--timeout TIMEOUT]
                     [--createpub] [--dumpkey] [--ext] [--sendtofdb]
                     [--uncipherfile UNCIPHERFILE] [--uncipher UNCIPHER]
                     [--verbosity {CRITICAL,ERROR,WARNING,DEBUG,INFO}]
                     [--private] [--ecmdigits ECMDIGITS] [-n N] [-p P] [-q Q]

                     [-e E] [--key KEY] [--isconspicuous] [--convert_idrsa_pub] [--isroca] [--check_publickey]
                     [--attack {brent,fermat_numbers_gcd,comfact_cn,wiener,factordb,smallq,pollard_rho,euler,z3_solver,neca,cm_factor,mersenne_pm1_gcd,SQUFOF,small_crt_exp,fibonacci_gcd,smallfraction,boneh_durfee,roca,fermat,londahl,mersenne_primes,partial_q,siqs,noveltyprimes,binary_polinomial_factoring,primorial_pm1_gcd,pollard_p_1,ecm2,cube_root,system_primes_gcd,dixon,ecm,pastctfprimes,qicheng,wolframalpha,hastads,same_n_huge_e,commonfactors,pisano_period,nsif,all}]

Mode 1 : Attack RSA (specify --publickey or n and e)

  • publickey : public rsa key to crack. You can import multiple public keys with wildcards.
  • uncipher : cipher message to decrypt
  • private : display private rsa key if recovered

Mode 2 : Create a Public Key File Given n and e (specify --createpub)

  • n : modulus
  • e : public exponent

Mode 3 : Dump the public and/or private numbers (optionally including CRT parameters in extended mode) from a PEM/DER format public or private key (specify --dumpkey)

  • key : the public or private key in PEM or DER format

Uncipher file

./RsaCtfTool.py --publickey ./key.pub --uncipherfile ./ciphered\_file

Print private key

./RsaCtfTool.py --publickey ./key.pub --private

Attempt to break multiple public keys with common factor attacks or individually- use quotes around wildcards to stop bash expansion

./RsaCtfTool.py --publickey "*.pub" --private

Optionaly send the results back to factordb

./RsaCtfTool.py --publickey "*.pub" --private --sendtofdb

Generate a public key

./RsaCtfTool.py --createpub -n 7828374823761928712873129873981723...12837182 -e 65537

Dump the parameters from a key

./RsaCtfTool.py --dumpkey --key ./key.pub

Check a given private key for conspicuousness

./RsaCtfTool.py --key examples/conspicuous.priv --isconspicuous

Factor with ECM when you know the approximate length in digits of a prime

./RsaCtfTool.py --publickey key.pub --ecmdigits 25 --verbose --private

NSIF Attack - factorization with GCD inverse modular exponent

time ./RsaCtfTool.py -n 1078615880917389544637583114473414840170786187365383943640580486946396054833005778796250863934445216126720683279228360145952738612886499734957084583836860500440925043100784911137186209476676352971557693774728859797725277166790113706541220865545309534507638851540886910549436636443182335048699197515327493691587 --attack nsif -e 10000

image

For more examples, look at test.sh file

Convert idrsa.pub to pem format

./RsaCtfTool.py --convert_idrsa_pub --publickey $HOME/.ssh/id_rsa.pub

Check if a given key or keys are roca

./RsaCtfTool.py --isroca --publickey "examples/*.pub"

Docker run

docker pull ganapati/rsactftool docker run -it --rm -v $PWD:/data ganapati/rsactftool <arguments>

Requirements

  • GMPY2
  • SymPy
  • PyCrypto
  • Requests
  • Libnum
  • SageMath : optional but advisable
  • Sage binaries

Ubuntu 18.04 and Kali specific Instructions

git clone https://github.com/Ganapati/RsaCtfTool.git
sudo apt-get install libgmp3-dev libmpc-dev
cd RsaCtfTool
pip3 install -r "requirements.txt"
python3 RsaCtfTool.py

Fedora (33 and above) specific Instructions

git clone https://github.com/Ganapati/RsaCtfTool.git
sudo dnf install gcc python3-devel python3-pip python3-wheel gmp-devel mpfr-devel libmpc-devel
cd RsaCtfTool
pip3 install -r "requirements.txt"
python3 RsaCtfTool.py

If you also want the optional SageMath you need to do

sudo dnf install sagemath
pip3 install -r "optional-requirements.txt"

MacOS-specific Instructions

If pip3 install -r "requirements.txt" fails to install requirements accessible within environment, the following command may work.

easy_install `cat requirements.txt`

Install neca

You can follow instructions from : https://www.mersenneforum.org/showthread.php?t=23087

Todo (aka. Help wanted !)

  • Implement test method in each attack
  • Assign the correct speed value in each attack