-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain.py
139 lines (117 loc) · 4.45 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import argparse
import os
import torch
import torch.nn as nn
import yaml
from torch.utils.data import random_split
from torch.utils.tensorboard import SummaryWriter
from tqdm.auto import trange
from data import InfiniteDataLoader, SpeakerDataset, infinite_iterator
from model import AdaINVC
def main(
config_file: str,
data_dir: str,
save_dir: str,
n_steps: int,
save_steps: int,
log_steps: int,
n_spks: int,
n_uttrs: int,
):
device = "cuda" if torch.cuda.is_available() else "cpu"
torch.backends.cudnn.benchmark = True
# Load config
config = yaml.load(open(config_file, "r"), Loader=yaml.FullLoader)
# Prepare data
data = SpeakerDataset(data_dir, segment=128, n_uttrs=n_uttrs)
# split train/valid sets
train_set, valid_set = random_split(
data, [int(len(data) * 0.8), len(data) - int(len(data) * 0.8)]
)
# construct loader
train_loader = InfiniteDataLoader(
train_set, batch_size=n_spks, shuffle=True, num_workers=8
)
valid_loader = InfiniteDataLoader(
valid_set, batch_size=n_spks, shuffle=True, num_workers=8
)
# construct iterator
train_iter = infinite_iterator(train_loader)
valid_iter = infinite_iterator(valid_loader)
# Build model
model = AdaINVC(config["Model"]).to(device)
model = torch.jit.script(model)
# Optimizer
opt = torch.optim.Adam(
model.parameters(),
lr=config["Optimizer"]["lr"],
betas=(config["Optimizer"]["beta1"], config["Optimizer"]["beta2"]),
amsgrad=config["Optimizer"]["amsgrad"],
weight_decay=config["Optimizer"]["weight_decay"],
)
# Tensorboard logger
writer = SummaryWriter(save_dir)
criterion = nn.L1Loss()
pbar = trange(n_steps, ncols=0)
valid_steps = 32
for step in pbar:
# get features
org_mels = next(train_iter)
org_mels = org_mels.flatten(0, 1)
org_mels = org_mels.to(device)
# reconstruction
mu, log_sigma, emb, rec_mels = model(org_mels)
# compute loss
rec_loss = criterion(rec_mels, org_mels)
kl_loss = 0.5 * (log_sigma.exp() + mu ** 2 - 1 - log_sigma).mean()
rec_lambda = config["Lambda"]["rec"]
kl_lambda = min(
config["Lambda"]["kl"] * step / config["Lambda"]["kl_annealing"],
config["Lambda"]["kl"],
)
loss = rec_lambda * rec_loss + kl_lambda * kl_loss
# update parameters
opt.zero_grad()
loss.backward()
grad_norm = nn.utils.clip_grad_norm_(model.parameters(), max_norm=5)
opt.step()
# save model and optimizer
if (step + 1) % save_steps == 0:
model_path = os.path.join(save_dir, f"model-{step + 1}.ckpt")
model.cpu()
model.save(model_path)
model.to(device)
opt_path = os.path.join(save_dir, f"opt-{step + 1}.ckpt")
torch.save(opt.state_dict(), opt_path)
if (step + 1) % log_steps == 0:
# validation
model.eval()
valid_loss = 0
for _ in range(valid_steps):
org_mels = next(valid_iter)
org_mels = org_mels.flatten(0, 1)
org_mels = org_mels.to(device)
mu, log_sigma, emb, rec_mels = model(org_mels)
loss = criterion(rec_mels, org_mels)
valid_loss += loss.item()
valid_loss /= valid_steps
model.train()
# record information
writer.add_scalar("training/rec_loss", rec_loss, step + 1)
writer.add_scalar("training/kl_loss", kl_loss, step + 1)
writer.add_scalar("training/grad_norm", grad_norm, step + 1)
writer.add_scalar("lambda/kl", kl_lambda, step + 1)
writer.add_scalar("validation/rec_loss", valid_loss, step + 1)
# update tqdm bar
pbar.set_postfix({"rec_loss": rec_loss.item(), "kl_loss": kl_loss.item()})
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("config_file", type=str)
parser.add_argument("data_dir", type=str)
parser.add_argument("save_dir", type=str)
parser.add_argument("--n_steps", type=int, default=int(1e6))
parser.add_argument("--save_steps", type=int, default=5000)
parser.add_argument("--log_steps", type=int, default=250)
parser.add_argument("--n_spks", type=int, default=32)
parser.add_argument("--n_uttrs", type=int, default=4)
main(**vars(parser.parse_args()))