|
| 1 | +""" |
| 2 | +@brief: Specify the project interface. |
| 3 | +@author: Hao Kang <[email protected]> |
| 4 | +""" |
| 5 | + |
| 6 | +from pathlib import Path |
| 7 | +from abc import ABC, abstractmethod |
| 8 | +from typing import Iterator, Literal, List, Type, Tuple |
| 9 | +from torch import Tensor |
| 10 | + |
| 11 | + |
| 12 | +# Define the type aliases. |
| 13 | +EmbeddingName = Literal["BgeBase", "MiniCPM"] |
| 14 | +DatasetName = Literal["MsMarco", "Beir"] |
| 15 | +PartitionName = Literal["Train", "Validate"] |
| 16 | + |
| 17 | + |
| 18 | +class Embedding(ABC): |
| 19 | + """ |
| 20 | + The interface for an embedding model. |
| 21 | +
|
| 22 | + Attributes: |
| 23 | + name (EmbeddingName): The name of the embedding. |
| 24 | + size (int): The size of the embedding. |
| 25 | + """ |
| 26 | + |
| 27 | + name: EmbeddingName |
| 28 | + size: int |
| 29 | + |
| 30 | + @abstractmethod |
| 31 | + def __init__(self, devices: List[int]) -> None: |
| 32 | + """ |
| 33 | + Initialize the embedding model. |
| 34 | +
|
| 35 | + :type devices: List[int] |
| 36 | + :param devices: The devices to use for embedding. |
| 37 | + """ |
| 38 | + raise NotImplementedError |
| 39 | + |
| 40 | + @abstractmethod |
| 41 | + def forward(self, passages: List[str]) -> Tensor: |
| 42 | + """ |
| 43 | + Forward pass to embed the given passages. |
| 44 | +
|
| 45 | + :type passages: List[str] |
| 46 | + :param passages: The list of passages to embed. |
| 47 | + :rtype: torch.Tensor |
| 48 | + :return: The computed embeddings in a tensor of shape (N, D), where N |
| 49 | + is the number of passages and D is the embedding size. |
| 50 | + """ |
| 51 | + raise NotImplementedError |
| 52 | + |
| 53 | + |
| 54 | +class Dataset(ABC): |
| 55 | + """ |
| 56 | + The interface for a dataset. |
| 57 | +
|
| 58 | + Attributes: |
| 59 | + name (DatasetName): The name of the dataset. |
| 60 | + """ |
| 61 | + |
| 62 | + name: DatasetName |
| 63 | + |
| 64 | + @abstractmethod |
| 65 | + def didIter(self, batchSize: int) -> Iterator[List[str]]: |
| 66 | + """ |
| 67 | + Iterate over the document IDs in batches. |
| 68 | +
|
| 69 | + :type batchSize: int |
| 70 | + :param batchSize: The batch size for each iteration. |
| 71 | + :rtype: Iterator[List[str]] |
| 72 | + :return: An iterator over the document IDs. Each iteration yields a |
| 73 | + list of document IDs. |
| 74 | + """ |
| 75 | + raise NotImplementedError |
| 76 | + |
| 77 | + @abstractmethod |
| 78 | + def docIter(self, batchSize: int) -> Iterator[List[str]]: |
| 79 | + """ |
| 80 | + Iterate over the document texts in batches. |
| 81 | +
|
| 82 | + :type batchSize: int |
| 83 | + :param batchSize: The batch size for each iteration. |
| 84 | + :rtype: Iterator[List[str]] |
| 85 | + :return: The iterator over the document texts. Each iteration yields a |
| 86 | + list of document texts. |
| 87 | + """ |
| 88 | + raise NotImplementedError |
| 89 | + |
| 90 | + @abstractmethod |
| 91 | + def docEmbIter( |
| 92 | + self, |
| 93 | + embedding: Type[Embedding], |
| 94 | + batchSize: int, |
| 95 | + numWorkers: int, |
| 96 | + shuffle: bool, |
| 97 | + ) -> Iterator[Tensor]: |
| 98 | + """ |
| 99 | + Iterate over the document embeddings in batches. |
| 100 | +
|
| 101 | + :type embedding: Type[Embedding] |
| 102 | + :param embedding: The embedding model to use. |
| 103 | + :type batchSize: int |
| 104 | + :param batchSize: The batch size for each iteration. |
| 105 | + :type numWorkers: int |
| 106 | + :param numWorkers: The number of workers for data loading. |
| 107 | + :type shuffle: bool |
| 108 | + :param shuffle: Whether to shuffle the data during loading. |
| 109 | + :rtype: Iterator[Tensor] |
| 110 | + :return: The iterator over the document embeddings. Each tensor has |
| 111 | + shape (N, D), where N is the batch size, or less for the last |
| 112 | + batch, and D is the embedding size. |
| 113 | + """ |
| 114 | + raise NotImplementedError |
| 115 | + |
| 116 | + @abstractmethod |
| 117 | + def getDocLen(self) -> int: |
| 118 | + """ |
| 119 | + Get the number of documents. |
| 120 | +
|
| 121 | + :rtype: int |
| 122 | + :return: The number of documents. |
| 123 | + """ |
| 124 | + raise NotImplementedError |
| 125 | + |
| 126 | + @abstractmethod |
| 127 | + def qidIter( |
| 128 | + self, split: PartitionName, batchSize: int |
| 129 | + ) -> Iterator[List[str]]: |
| 130 | + """ |
| 131 | + Iterate over the query IDs in batches. |
| 132 | +
|
| 133 | + :type split: PartitionName |
| 134 | + :param split: Whether to use the training or validation split. |
| 135 | + :type batchSize: int |
| 136 | + :param batchSize: The batch size for each iteration. |
| 137 | + :rtype: Iterator[List[str]] |
| 138 | + :return: The iterator over the query IDs. Each iteration yields a list |
| 139 | + of query IDs. |
| 140 | + """ |
| 141 | + raise NotImplementedError |
| 142 | + |
| 143 | + @abstractmethod |
| 144 | + def qryIter( |
| 145 | + self, split: PartitionName, batchSize: int |
| 146 | + ) -> Iterator[List[str]]: |
| 147 | + """ |
| 148 | + Iterate over the query texts in batches. |
| 149 | +
|
| 150 | + :type split: PartitionName |
| 151 | + :param split: Whether to use the training or validation split. |
| 152 | + :type batchSize: int |
| 153 | + :param batchSize: The batch size for each iteration. |
| 154 | + :rtype: Iterator[List[str]] |
| 155 | + :return: The iterator over the query texts. Each iteration yields a |
| 156 | + list of query texts. |
| 157 | + """ |
| 158 | + raise NotImplementedError |
| 159 | + |
| 160 | + @abstractmethod |
| 161 | + def qryEmbIter( |
| 162 | + self, |
| 163 | + split: PartitionName, |
| 164 | + embedding: Type[Embedding], |
| 165 | + batchSize: int, |
| 166 | + numWorkers: int, |
| 167 | + shuffle: bool, |
| 168 | + ) -> Iterator[Tensor]: |
| 169 | + """ |
| 170 | + Iterate over the query embeddings in batches. |
| 171 | +
|
| 172 | + :type split: PartitionName |
| 173 | + :param split: Whether to use the training or validation split. |
| 174 | + :type embedding: Type[Embedding] |
| 175 | + :param embedding: The embedding class to use. |
| 176 | + :type batchSize: int |
| 177 | + :param batchSize: The batch size for each iteration. |
| 178 | + :type numWorkers: int |
| 179 | + :param numWorkers: The number of workers for data loading. |
| 180 | + :type shuffle: bool |
| 181 | + :param shuffle: Whether to shuffle the data. |
| 182 | + :rtype: Iterator[Tensor] |
| 183 | + :return: The iterator over the query embeddings. Each tensor has shape |
| 184 | + (N, D), where N is the batch size, or less for the last batch, and |
| 185 | + D is the embedding size. |
| 186 | + """ |
| 187 | + raise NotImplementedError |
| 188 | + |
| 189 | + @abstractmethod |
| 190 | + def getQryLen(self, split: PartitionName) -> int: |
| 191 | + """ |
| 192 | + Get the number of queries. |
| 193 | +
|
| 194 | + :type split: PartitionName |
| 195 | + :param split: Whether to use the training or validation split. |
| 196 | + :rtype: int |
| 197 | + :return: The number of queries. |
| 198 | + """ |
| 199 | + raise NotImplementedError |
| 200 | + |
| 201 | + @abstractmethod |
| 202 | + def getQryRel(self, split: PartitionName) -> Path: |
| 203 | + """ |
| 204 | + Get the path to the query relevance file. |
| 205 | +
|
| 206 | + :type split: PartitionName |
| 207 | + :param split: Whether to use the training or validation split. |
| 208 | + :rtype: Path |
| 209 | + :return: The path to the query relevance file. |
| 210 | + """ |
| 211 | + |
| 212 | + @abstractmethod |
| 213 | + def mixEmbIter( |
| 214 | + self, |
| 215 | + split: PartitionName, |
| 216 | + embedding: Type[Embedding], |
| 217 | + relevant: int, |
| 218 | + batchSize: int, |
| 219 | + numWorkers: int, |
| 220 | + shuffle: bool, |
| 221 | + ) -> Iterator[Tuple[Tensor, Tensor]]: |
| 222 | + """ |
| 223 | + Iterate over the embeddings of query and its retrieved documents in |
| 224 | + batches. |
| 225 | +
|
| 226 | + :type split: PartitionName |
| 227 | + :param split: Whether to use the training or validation split. |
| 228 | + :type embedding: Type[Embedding] |
| 229 | + :param embedding: The embedding class to use. |
| 230 | + :type relevant: int |
| 231 | + :param relevant: The number of documents to include for each query. |
| 232 | + :type batchSize: int |
| 233 | + :param batchSize: The batch size for each iteration. |
| 234 | + :type numWorkers: int |
| 235 | + :param numWorkers: The number of workers for data loading. |
| 236 | + :type shuffle: bool |
| 237 | + :param shuffle: Whether to shuffle the data. |
| 238 | + :rtype: Iterator[Tuple[Tensor, Tensor]] |
| 239 | + :return: The iterator over the query and document embeddings. The |
| 240 | + first tensor is the query embeddings and has shape (N, D), where N |
| 241 | + is the batch size, or less for the last batch, and D is the |
| 242 | + embedding size. The second tensor is the document embeddings and |
| 243 | + has shape (N, K, D), where K is the number of relevant documents. |
| 244 | + """ |
| 245 | + raise NotImplementedError |
| 246 | + |
| 247 | + @abstractmethod |
| 248 | + def getMixLen(self, split: PartitionName) -> int: |
| 249 | + """ |
| 250 | + Get the number of query-document pairs. |
| 251 | + This function is equival to getQryLen. |
| 252 | +
|
| 253 | + :type split: PartitionName |
| 254 | + :param split: Whether to use the training or validation split. |
| 255 | + :rtype: int |
| 256 | + :return: The number of query-document pairs. |
| 257 | + """ |
| 258 | + raise NotImplementedError |
| 259 | + |
| 260 | + |
| 261 | +class SAE(ABC): |
| 262 | + """ |
| 263 | + The interface for a sparse autoencoder. |
| 264 | + """ |
| 265 | + |
| 266 | + def __init__(self, features: int, expandBy: int) -> None: |
| 267 | + """ |
| 268 | + Initialize the sparse autoencoder. |
| 269 | +
|
| 270 | + :type features: int |
| 271 | + :param features: The embedding size. |
| 272 | + :type expandBy: int |
| 273 | + :param expandBy: Expand factor for the dictionary. |
| 274 | + """ |
| 275 | + raise NotImplementedError |
| 276 | + |
| 277 | + def forward(self, x: Tensor, activate: int) -> Tuple[Tensor, Tensor]: |
| 278 | + """ |
| 279 | + Forward pass to reconstruct the embedding. |
| 280 | +
|
| 281 | + :type x: Tensor |
| 282 | + :param x: The original embedding. The tensor has shape (N, D), where N |
| 283 | + is the batch size and D is the embedding size. |
| 284 | + :type K: int |
| 285 | + :param activate: The number of features to activate. This is the |
| 286 | + sparsity constraint. Only the top-K features are activated. The |
| 287 | + rest are set to zero. |
| 288 | + :rtype: Tuple[Tensor, Tensor] |
| 289 | + :return: The latent features and the reconstructed embedding. The |
| 290 | + latent features have shape (N, D), where D is the dictionary size. |
| 291 | + The reconstructed embedding has shape (N, E), where E is the |
| 292 | + embedding size. N is the batch size in both cases. |
| 293 | + """ |
| 294 | + raise NotImplementedError |
0 commit comments