-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathcrawler.py
215 lines (198 loc) · 8.54 KB
/
crawler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import gc
import heapq
import logging
import os
import pickle
from multiprocessing import Pool
from tqdm import tqdm
from corpus_interface import Document, DocumentAnnotation, UnifiedGetter
from document_rater import DocumentRater
from wandb_logger import WandbLogger
logger = logging.getLogger(__name__)
class Crawler:
def __init__(
self,
unified_getter: UnifiedGetter,
quality_raters: DocumentRater | list[DocumentRater],
output_dir: str | None = None,
num_workers: int = 1,
wandb_logger: WandbLogger = None,
max_num_in_mem_docs: int = 1000000,
) -> None:
self.unified_getter = unified_getter
self.output_dir = output_dir
self.queue = []
self.visited = set()
self.quality_raters = (
quality_raters if isinstance(quality_raters, list) else [quality_raters]
)
self.num_workers = num_workers
self.wandb_logger = wandb_logger
self.max_num_in_mem_docs = max_num_in_mem_docs
self.require_doc_content = any(rater.require_doc_text() for rater in self.quality_raters)
def put_into_queue(self, documents: list[Document]) -> None:
for document in documents:
heapq.heappush(self.queue, (document.annotations, document.docid))
self.visited.add(document.docid)
logger.info(f"Size after put: {len(self.queue)}")
@staticmethod
def _get_mean_score_for_logging(
annotations: list[DocumentAnnotation], postfix: str
) -> dict[str, float]:
result_dict = {}
for key in annotations[0].keys():
result_dict[f"mean_{key}_{postfix}"] = sum(
annotation[key] for annotation in annotations
) / len(annotations)
return result_dict
def _log_all(self, **kwargs) -> None:
for key, value in kwargs.items():
if isinstance(value, float):
logger.info(f"{key} = {value:.2f}")
else:
logger.info(f"{key} = {value}")
if self.wandb_logger:
self.wandb_logger.log(**kwargs)
def pop_from_queue(self, num_docs: int) -> list[str]:
annotations, docids = [], []
for _ in range(num_docs):
try:
annotation, docid = heapq.heappop(self.queue)
annotations.append(annotation)
docids.append(docid)
except IndexError:
break
mean_results = self._get_mean_score_for_logging(annotations, "pop")
size_after_pop = len(self.queue)
self._log_all(**mean_results, size_after_pop=size_after_pop)
return docids
def find_outinks(
self, docids: list[str], with_predecessor_info: bool = False
) -> list[str] | list[tuple[str, list[str]]]:
input_size = len(docids)
with Pool(self.num_workers) as pool:
results = list(
tqdm(
pool.imap(self.unified_getter.get_outlinks, docids),
total=input_size,
desc="Finding outlinks",
)
)
outlinks = []
for result in results:
outlinks.extend(result)
if with_predecessor_info:
outlinks_with_predecessor = []
for docid, result in zip(docids, results, strict=True):
outlinks_with_predecessor.append((docid, result))
total_outlinks = len(outlinks)
outlinks = set(outlinks)
total_unique_outlinks = len(outlinks)
outlinks -= self.visited
total_unique_outlinks_unvisited = len(outlinks)
self._log_all(
total_outlinks=total_outlinks,
total_unique_outlinks=total_unique_outlinks,
total_unique_outlinks_unvisited=total_unique_outlinks_unvisited,
expansion_ratio=total_outlinks / input_size,
expansion_ratio_unique=total_unique_outlinks / input_size,
expansion_ratio_unique_unvisited=total_unique_outlinks_unvisited / input_size,
unvisited_ratio=total_unique_outlinks_unvisited / total_unique_outlinks,
)
outlinks = list(outlinks)
return (outlinks, outlinks_with_predecessor) if with_predecessor_info else outlinks
def _get_scores_for_docs(
self, docids: list[str], current_partition: int, total_partitions: int
) -> list[Document]:
if self.require_doc_content:
# Fetch docs
with Pool(self.num_workers) as pool:
all_docs = list(
tqdm(
pool.imap(self.unified_getter.get_doc, docids),
total=len(docids),
desc=f"Getting docs (partition {current_partition}/{total_partitions})",
)
)
all_docs = [doc for doc in all_docs if doc is not None]
else:
all_docs = [Document(docid=docid) for docid in docids]
results = all_docs
for quality_rater in self.quality_raters:
results = quality_rater(results)
if self.require_doc_content:
for document in results:
del document.text
return results
def get_scores_for_docs(self, docids: list[str]) -> list[Document]:
logger.info(f"Getting scores for {len(docids)} docs")
docids_partitions = [
docids[i : i + self.max_num_in_mem_docs]
for i in range(0, len(docids), self.max_num_in_mem_docs)
]
for i, docids_partition in enumerate(docids_partitions):
logger.info(f"Partition {i+1}: {len(docids_partition)} docs")
results: list[Document] = []
for i, docids_partition in enumerate(docids_partitions):
results.extend(
self._get_scores_for_docs(
docids_partition,
current_partition=i + 1,
total_partitions=len(docids_partitions),
)
)
if self.require_doc_content:
doc_hit_rate = len(results) / len(docids)
self._log_all(doc_hit_rate=doc_hit_rate)
annotations = [x.annotations for x in results]
mean_results = self._get_mean_score_for_logging(annotations, "push")
self._log_all(**mean_results)
return results
def write_output(self, iter_num: int, docids: list[str]) -> None:
with open(os.path.join(self.output_dir, f"iter_{iter_num}.docids.txt"), "w") as fout:
for docid in docids:
fout.write(f"{docid}\n")
def save_state(self, iter_num: int, num_selected_docs: int) -> None:
state = {
"queue": self.queue,
"visited": self.visited,
"num_selected_docs": num_selected_docs,
}
with open(os.path.join(self.output_dir, f"state_{iter_num:06d}.pkl"), "wb") as fout:
pickle.dump(state, fout)
def init_or_resume_state(self, state_file: str | None) -> tuple[int, int]:
if state_file is None:
logger.info("Starting from scratch")
return 0, 0
logger.info(f"Resuming from state file: {state_file}")
iter_num = int(state_file.split("_")[-1].split(".")[0])
with open(state_file, "rb") as fin:
state = pickle.load(fin)
self.queue, self.visited = state["queue"], state["visited"]
num_selected_docs = state["num_selected_docs"]
original_quality_raters = set(self.queue[0][0].keys())
current_quality_raters = set(
quality_rater.get_name() for quality_rater in self.quality_raters
)
gc.collect()
if original_quality_raters != current_quality_raters:
logger.info("Quality raters mismatch")
logger.info(
f"Quality raters in state file: {original_quality_raters}, "
f"current quality raters: {current_quality_raters}"
)
logger.info("Current first item in the queue:")
logger.info(self.queue[0])
logger.info("Recomputing scores for all docs in the queue")
recomputed = self.get_scores_for_docs([docid for _, docid in self.queue])
assert len(recomputed) == len(self.queue)
logger.info("Constructing new queue")
new_queue = []
for doc, (_, docid) in zip(recomputed, self.queue):
assert doc.docid == docid
new_queue.append((doc.annotations, docid))
self.queue = new_queue
heapq.heapify(self.queue)
logger.info("After recomputation, first item in the queue:")
logger.info(self.queue[0])
return iter_num, num_selected_docs