-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
336 lines (293 loc) · 13.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import os
import glob
import sys
import torch
from torch.autograd import Variable
from torch.utils.data import Dataset,DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
from torchvision import transforms
from torchvision.transforms import Compose,Resize,ToTensor,Normalize
from PIL import Image,ImageEnhance
import time as time
import models
import numpy as np
import torchvision.utils as vutils
import pickle
import pandas as pd
import random
##### Parse & Preprocess #####
def parse_db(db_txt, keys):
"""Read data from database txt"""
df = pd.read_csv(db_txt, sep=' ')
db = {k:df.loc[:, k].values for k in keys}
return db
def process_labels(labels):
unique_id = np.unique(labels)
print('total id count:', len(unique_id))
id_dict = {ID:i for i, ID in enumerate(unique_id.tolist())}
for i in range(len(labels)):
labels[i] = id_dict[labels[i]]
assert len(unique_id)-1 == np.max(labels)
return labels
def hash_track_id(track_id):
return 1e13+track_id[0]*1e+12 + track_id[1]*1e+6 + track_id[2]
##### Dataset #####
class Unsupervised_Triplet_Image_Dataset(object):
def __init__(self, pkl_name, transform):
with open(pkl_name, 'rb') as f:
data = pickle.load(f)
self.samples = data['afl_samples']
self.imgs = data['track_dict']
self.transform = transform
def getitem(self, track_id, img_idx):
return self.transform(Image.open(self.imgs[track_id][img_idx]))
def __len__(self):
return sum([len(track) for track in self.imgs])
class Image_Dataset(Dataset):
def __init__(self, db_txt, transform, image_per_class=0, filter_labels=False):
with open(db_txt, 'r') as f:
df = pd.read_csv(f, sep=' ')
df = df.groupby('label').filter(lambda x: len(x) > image_per_class)
if filter_labels:
df = df.loc[df.loc[:, 'label']>0]
self.imgs = df.loc[:, 'img'].values
self.labels = process_labels(df.loc[:, 'label'].values) # Process labels
self.transform = transform
def __getitem__(self, idx):
img = Image.open(self.imgs[idx])
label = int(self.labels[idx])
return {'img':self.transform(img), 'class':label}
def __len__(self):
return len(self.labels)
class PCTD_Dataset(Dataset):
def __init__(self, db_txt, transform, image_per_class=0, filter_labels=False):
with open(db_txt, 'r') as f:
df = pd.read_csv(f, sep=' ')
df = df.groupby('label').filter(lambda x: len(x) > image_per_class)
if filter_labels:
df = df.loc[df.loc[:, 'label']>0]
imgs = df.loc[:, 'img'].values
cam = df.loc[:, 'cam'].values
label = df.loc[:, 'label'].values
track_id = df.loc[:, 'track_id'].values
self.img_dict = {}
self.label_dict = {}
for cam_id in np.unique(cam):
idx = cam == cam_id
uuid = process_labels(label[idx]*1000 + track_id[idx])
self.img_dict[cam_id] = imgs[idx]
self.label_dict[cam_id] = uuid
assert len(self.img_dict[cam_id] == self.label_dict[cam_id])
self.transform = transform
def getitem(self, cam_id, idx):
img = Image.open(self.img_dict[cam_id][idx])
label = int(self.label_dict[cam_id][idx])
return {'img':self.transform(img), 'class':label}
def get_n_ids_list(self):
n_ids_list = []
for cam_id in sorted(self.label_dict.keys()):
n_ids_list.append(len(np.unique(self.label_dict[cam_id])))
return n_ids_list
##### Dataloader #####
class Unsupervised_Triplet_Image_DataLoader(object):
def __init__(self, dataset, max_batch_size, mode='unfix', image_per_class=None):
self.dataset= dataset
self.samples = dataset.samples
self.imgs = dataset.imgs
self.max_batch_size = max_batch_size
self.image_per_class = image_per_class
self.mode = mode
def __next__(self):
img_list = []
sample_list = []
while len(img_list) < self.max_batch_size:
sample_idx = random.choice(range(len(self.samples)))
tracks = self.samples[sample_idx]
track_idx = np.random.permutation(len(tracks))
for i in track_idx:
track_id = tracks[i]
if len(img_list) >= self.max_batch_size:
break
if self.mode == 'unfix':
for img_idx in range(len(self.imgs[track_id])):
img_list.append((track_id, img_idx))
sample_list.append(sample_idx)
elif self.mode == 'fix':
if len(self.imgs[track_id]) == 0:
raise RuntimeError('a track should have at least 1 image')
for i in range(self.image_per_class):
if i < len(self.imgs[track_id]):
img_list.append((track_id, i))
else:
img_list.append((track_id, len(self.imgs[track_id])-1))
sample_list.append(sample_idx)
else:
raise NotImplementedError('mode need to be either "fix" or "unfix"')
track_list = [hash_track_id(track_id) for track_id, _ in img_list]
# Shuffle
rng = np.random.permutation(len(img_list))
#rng = np.random.choice(len(img_list), size=self.max_batch_size, replace=False)
img_list = np.array(img_list)[rng]
track_list = np.array(track_list)[rng]
sample_list = np.array(sample_list)[rng]
# Cut to fit batch
img_list = img_list[:self.max_batch_size]
sample_list = sample_list[:self.max_batch_size]
track_list = track_list[:self.max_batch_size]
# Generate mask
imgs = [self.dataset.getitem(track_idx, img_idx) for track_idx, img_idx in img_list]
sample_list = sample_list.reshape(-1, 1)
sample_list = (sample_list == sample_list.T)
track_list = track_list.reshape(-1, 1)
track_list = (track_list == track_list.T)
pos_mask = (sample_list & track_list) ^ np.eye(len(img_list), dtype=bool)
neg_mask = sample_list & (~track_list)
return {'img':torch.stack(imgs, dim=0),
'pos_mask': torch.from_numpy(pos_mask.astype(np.uint8)),
'neg_mask': torch.from_numpy(neg_mask.astype(np.uint8))}
def __iter__(self):
return self
class CDM_Triplet_Image_DataLoader(object):
def __init__(self, src_dataset, tgt_dataset, batch_size, image_per_class=None, drop_afl=False):
# source dataset
self.src_dataset= src_dataset
self.src_img_list = {}
for c in np.unique(src_dataset.labels):
idxs = np.nonzero(src_dataset.labels == c)[0]
if len(idxs) >= image_per_class:
self.src_img_list[c] = idxs
self.src_unique_labels = np.array(list(self.src_img_list.keys()))
# target dataset
self.tgt_dataset= tgt_dataset
self.tgt_samples = tgt_dataset.samples
self.tgt_imgs = tgt_dataset.imgs
self.drop_afl = drop_afl
self.batch_size = batch_size
self.src_batch_size = ((batch_size//2)//image_per_class) * image_per_class
self.tgt_batch_size = batch_size - self.src_batch_size
self.image_per_class = image_per_class
def __next__(self):
label_list = np.zeros((self.batch_size)) # record class for source, track_id for target
# source dataset
classes = np.random.choice(self.src_unique_labels, self.src_batch_size//self.image_per_class)
src_img_list = []
src_label_list = []
for i, c in enumerate(classes):
src_img_list += np.random.choice(self.src_img_list[c], self.image_per_class).tolist()
src_label_list += ([c] * self.image_per_class)
assert len(src_img_list) == self.src_batch_size
src_img_list = np.array(src_img_list)
label_list[:self.src_batch_size] = np.array(src_label_list)
# target dataset
tgt_img_list = []
tgt_sample_list = []
while len(tgt_img_list) < self.tgt_batch_size:
sample_idx = random.choice(range(len(self.tgt_samples)))
for track_id in self.tgt_samples[sample_idx]:
if len(self.tgt_imgs[track_id]) == 0:
raise RuntimeError('a track should have at least 1 image')
for i in range(self.image_per_class):
img_idx = min(i, len(self.tgt_imgs[track_id])-1)
tgt_img_list.append((track_id, img_idx))
tgt_sample_list.append(sample_idx)
tgt_label_list = [hash_track_id(track_id) for track_id, _ in tgt_img_list]
tgt_img_list = np.array(tgt_img_list)[:self.tgt_batch_size]
tgt_sample_list = np.array(tgt_sample_list)[:self.tgt_batch_size]
label_list[self.src_batch_size:] = np.array(tgt_label_list)[:self.tgt_batch_size]
# Read img
imgs = []#torch.FloatTensor(self.batch_size, 3, 224, 224)
for i, idx in enumerate(src_img_list):
imgs.append(self.src_dataset[int(idx)]['img'])
for i, (track_idx, img_idx) in enumerate(tgt_img_list):
imgs.append(self.tgt_dataset.getitem(track_idx, img_idx))
imgs = torch.stack(imgs, dim=0)
# Generate mask
sample_mask = np.ones((self.batch_size, self.batch_size), dtype=bool)
if self.drop_afl:
sample_mask[self.tgt_batch_size:, self.tgt_batch_size:] = 0
else:
sample_mask[self.tgt_batch_size:, self.tgt_batch_size:] = (tgt_sample_list.reshape(-1,1) == tgt_sample_list)
label_mask = (label_list.reshape(-1,1) == label_list)
pos_mask = (sample_mask & label_mask) ^ np.eye(self.batch_size, dtype=bool)
neg_mask = sample_mask & (~label_mask)
# shuffle
rng = torch.randperm(self.batch_size)
return {'img':imgs[rng],
'pos_mask': torch.from_numpy(pos_mask.astype(np.uint8))[:, rng][rng, :],
'neg_mask': torch.from_numpy(neg_mask.astype(np.uint8))[:, rng][rng, :]}
def __iter__(self):
return self
class Triplet_DataLoader(object):
def __init__(self, dataset, class_per_batch, image_per_class):
self.dataset = dataset
self.class_per_batch = class_per_batch
self.image_per_class = image_per_class
self.batch_size = class_per_batch * image_per_class
self.img_list = {}
for c in np.unique(dataset.labels):
idxs = np.nonzero(dataset.labels == c)[0]
if len(idxs) >= image_per_class:
self.img_list[c] = idxs
self.unique_labels = np.array(list(self.img_list.keys()))
def __next__(self):
# Sample class id
classes = np.random.choice(self.unique_labels, self.class_per_batch)
# Sample images
batch_idx = np.zeros(self.batch_size)
for i, c in enumerate(classes):
batch_idx[i*self.image_per_class:(i+1)*self.image_per_class] = \
np.random.choice(self.img_list[c], self.image_per_class)
# Get images
#imgs = torch.FloatTensor(self.batch_size, 3, 224, 224)
imgs = []
labels = [] #torch.LongTensor(self.batch_size)
for i, idx in enumerate(batch_idx):
data = self.dataset[int(idx)]
imgs.append(data['img'])
labels.append(data['class'])
imgs = torch.stack(imgs, dim=0)
labels = torch.LongTensor(labels)
# Shuffle images and labels
rng = torch.randperm(self.batch_size)
return {'img':imgs[rng], 'class':labels[rng]}
def __iter__(self):
return self
class PCTD_DataLoader(object):
def __init__(self, dataset, batch_size):
self.dataset = dataset
self.batch_size = batch_size
self.n_ids_list = dataset.get_n_ids_list()
self.n_cams = len(self.n_ids_list)
self.n_sample_per_cam = batch_size // self.n_cams
def __next__(self):
imgs = []
labels = []
for cam_id in range(self.n_cams):
cam_id += 1
for idx in np.random.choice(len(self.dataset.label_dict[cam_id]), size=self.n_sample_per_cam, replace=False):
data = self.dataset.getitem(cam_id, idx)
imgs.append(data['img'])
labels.append(data['class'])
imgs = torch.stack(imgs, dim=0)
labels = torch.LongTensor(labels)
return {'img':imgs, 'class':labels}
def __iter__(self):
return self
##### High-level call: Get dataloader#####
def Get_normal_DataLoader(db_txt, transform, image_per_class=0, batch_size=128, shuffle=False, num_workers=6):
dataset = Image_Dataset(db_txt, transform, image_per_class)
return DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
def Get_unsupervised_triplet_DataLoader(pkl_name, transform, max_batch_size, mode='unfix', image_per_class=None):
dataset = Unsupervised_Triplet_Image_Dataset(pkl_name, transform)
return Unsupervised_Triplet_Image_DataLoader(dataset, max_batch_size, mode, image_per_class)
def Get_CDM_triplet_DataLoader(db_txt, pkl_name, transform, batch_size, image_per_class=None, drop_afl=False):
src_dataset = Image_Dataset(db_txt, transform, image_per_class)
tgt_dataset = Unsupervised_Triplet_Image_Dataset(pkl_name, transform)
return CDM_Triplet_Image_DataLoader(src_dataset, tgt_dataset, batch_size, image_per_class, drop_afl)
def Get_triplet_DataLoader(db_txt, transform, class_per_batch, image_per_class):
dataset = Image_Dataset(db_txt, transform, image_per_class)
return Triplet_DataLoader(dataset, class_per_batch, image_per_class)
def Get_PCTD_DataLoader(db_txt, transform, batch_size=128):
dataset = PCTD_Dataset(db_txt, transform)
n_ids_list = dataset.get_n_ids_list()
return PCTD_DataLoader(dataset, batch_size=batch_size), n_ids_list