-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinference.py
53 lines (45 loc) · 1.43 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as T
import torch.backends.cudnn as cudnn
cudnn.benchmark=True
import sys
from tqdm import tqdm
import argparse
import sys
import os
import numpy as np
import utils
import models
def inference(dataloader, base_net):
"""Inference dataloader"""
base_net.eval()
with torch.no_grad():
features = []
for samples in tqdm(dataloader, ncols=100):
b_img = samples['img'].cuda()
pred_feat = base_net(b_img)
features.append(pred_feat)
features = torch.cat(features, dim=0).cpu().numpy()
base_net.train()
return features
def inference_db(db_txt, model):
"""Inference images in database txt"""
# Set transformation
test_transform = T.Compose([T.Resize((224, 224)), T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
# Get Dataset & DataLoader
dataloader = utils.Get_normal_DataLoader(db_txt, test_transform, batch_size=64)
# Get Model
base_net = models.FeatureResNet(n_layers=50)
pretrain_model = torch.load(model)
for key in ['fc.weight','fc.bias']:
if key in pretrain_model:
del pretrain_model[key]
base_net.load_state_dict(pretrain_model)
print('pretrain model loaded.')
base_net = base_net.cuda()
# Inference
features = inference(dataloader, base_net)
return features