-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
559 lines (479 loc) · 22.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
from config import dset_root, setup_dataset
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import os
import random
import argparse
import copy
import logging
import sys
import time
import shutil
from BCNN import create_bcnn_model
from test import test_model
from plot_curve import plot_log
import json
def initializeLogging(log_filename, logger_name):
log = logging.getLogger(logger_name)
log.setLevel(logging.DEBUG)
log.addHandler(logging.StreamHandler(sys.stdout))
log.addHandler(logging.FileHandler(log_filename, mode='a'))
return log
def save_checkpoint(state, is_best, checkpoint_folder='exp',
filename='checkpoint.pth.tar'):
filename = os.path.join(checkpoint_folder, filename)
best_model_filename = os.path.join(checkpoint_folder, 'model_best.pth.tar')
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, best_model_filename)
def initialize_optimizer(model_ft, lr, optimizer='sgd', wd=0, finetune_model=True,
proj_lr=1e-3, proj_wd=1e-5, beta1=0.9, beta2=0.999):
fc_params_to_update = []
params_to_update = []
proj_params_to_update = []
if finetune_model:
for name, param in model_ft.named_parameters():
# if name == 'module.fc.bias' or name == 'module.fc.weight':
if 'module.fc' in name:
fc_params_to_update.append(param)
else:
if model_ft.module.learn_proj and \
'feature_extractors.0.1.weight' in name:
proj_params_to_update.append(param)
else:
params_to_update.append(param)
param.requires_grad = True
# Observe that all parameters are being optimized
if optimizer == 'sgd':
optimizer_ft = optim.SGD([
{'params': params_to_update},
{'params': proj_params_to_update,
'weight_decay': proj_wd, 'lr': proj_lr},
{'params': fc_params_to_update, 'weight_decay': 1e-5, 'lr': 1e-2}],
lr=lr, momentum=0.9, weight_decay=wd)
elif optimizer == 'adam':
optimizer_ft = optim.Adam([
{'params': params_to_update},
{'params': proj_params_to_update,
'weight_decay': proj_wd, 'lr': proj_lr},
{'params': fc_params_to_update, 'weight_decay': 1e-5, 'lr': 1e-2}],
lr=lr, weight_decay=wd,
betas=(beta1, beta2))
else:
raise ValueError('Unknown optimizer: %s' % optimizer)
else:
for name, param in model_ft.named_parameters():
# if name == 'module.fc.bias' or name == 'module.fc.weight':
if 'module.fc' in name:
param.requires_grad = True
fc_params_to_update.append(param)
else:
if model_ft.module.learn_proj and \
'feature_extractors.0.1.weight' in name:
param.requires_grad = True
proj_params_to_update.append(param)
else:
param.requires_grad = False
# Observe that all parameters are being optimized
if optimizer == 'sgd':
if len(proj_params_to_update) == 0:
optimizer_ft = optim.SGD(fc_params_to_update, lr=lr, momentum=0.9,
weight_decay=wd)
else:
optimizer_ft = optim.SGD(
[{'params': fc_params_to_update},
{'params': proj_params_to_update,
'weight_decay': proj_wd, 'lr': proj_lr}],
lr=lr, momentum=0.9, weight_decay=wd)
elif optimizer == 'adam':
optimizer_ft = optim.Adam(fc_params_to_update, lr=lr, weight_decay=wd,
betas=(beta1, beta2))
else:
raise ValueError('Unknown optimizer: %s' % optimizer)
return optimizer_ft
def train_model(model, dset_loader, criterion,
optimizer, batch_size_update=256,
# maxItr=50000, logger_name='train_logger', checkpoint_folder='exp',
epoch=45, logger_name='train_logger', checkpoint_folder='exp',
start_itr=0, clip_grad=-1, scheduler=None, fine_tune=True):
maxItr = epoch * len(dset_loader['train'].dataset) // \
dset_loader['train'].batch_size + 1
val_every_number_examples = max(10000,
len(dset_loader['train'].dataset) // 5)
val_frequency = val_every_number_examples // dset_loader['train'].batch_size
checkpoint_frequency = 5 * len(dset_loader['train'].dataset) / \
dset_loader['train'].batch_size
last_checkpoint = start_itr - 1
logger = logging.getLogger(logger_name)
logger_filename = logger.handlers[1].stream.name
device = next(model.parameters()).device
since = time.time()
running_loss = 0.0; running_num_data = 0
running_corrects = 0
val_loss_history = []; best_acc = 0.0
val_acc = 0.0
# best_model_wts = copy.deepcopy(model.state_dict())
dset_iter = {x:iter(dset_loader[x]) for x in ['train', 'val']}
bs = dset_loader['train'].batch_size
update_frequency = batch_size_update // bs
if fine_tune:
model.train()
else:
model.module.fc.train()
last_epoch = 0
for itr in range(start_itr, maxItr):
# at the end of validation set model.train()
if (itr + 1) % val_frequency == 0 or itr == maxItr - 1:
logger.info('Iteration {}/{}'.format(itr, maxItr - 1))
logger.info('-' * 10)
try:
all_fields = next(dset_iter['train'])
labels = all_fields[-2]
inputs = all_fields[:-2]
# inputs, labels, _ = next(dset_iter['train'])
except StopIteration:
dset_iter['train'] = iter(dset_loader['train'])
all_fields = next(dset_iter['train'])
labels = all_fields[-2]
inputs = all_fields[:-2]
# inputs, labels, _ = next(dset_iter['train'])
inputs = [x.to(device) for x in inputs]
labels = labels.to(device)
with torch.set_grad_enabled(True):
outputs = model(*inputs)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
loss.backward()
if (itr + 1) % update_frequency == 0:
if clip_grad > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(),
clip_grad)
optimizer.step()
optimizer.zero_grad()
epoch = ((itr + 1) * bs) // len(dset_loader['train'].dataset)
running_num_data += inputs[0].size(0)
running_loss += loss.item() * inputs[0].size(0)
running_corrects += torch.sum(preds == labels.data)
if (itr + 1) % val_frequency == 0 or itr == maxItr - 1:
running_loss = running_loss / running_num_data
running_acc = running_corrects.double() / running_num_data
# print('{} Loss: {:.4f} Acc: {:.4f}'.format('Train',
# running_loss, running_acc))
logger.info('{} Loss: {:.4f} Acc: {:.4f}'.format( \
'Train', running_loss, running_acc))
running_loss = 0.0; running_num_data = 0; running_corrects = 0
model.eval()
val_running_loss = 0.0; val_running_corrects = 0
# for inputs, labels, _ in dset_loader['val']:
for all_fields in dset_loader['val']:
labels = all_fields[-2]
inputs = all_fields[:-2]
inputs = [x.to(device) for x in inputs]
labels = labels.to(device)
with torch.set_grad_enabled(False):
outputs = model(*inputs)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
val_running_loss += loss.item() * inputs[0].size(0)
val_running_corrects += torch.sum(preds == labels.data)
val_loss = val_running_loss / len(dset_loader['val'].dataset)
val_acc = val_running_corrects.double() / len(dset_loader['val'].dataset)
# print('{} Loss: {:.4f} Acc: {:.4f}'.format('Validation',
# val_loss, val_acc))
logger.info('{} Loss: {:.4f} Acc: {:.4f}'.format( \
'Validation', val_loss, val_acc))
plot_log(logger_filename,
logger_filename.replace('history.txt', 'curve.png'), True)
if fine_tune:
model.train()
else:
model.module.fc.train()
# update scheduler
if scheduler is not None:
if isinstance(scheduler, \
torch.optim.lr_scheduler.ReduceLROnPlateau):
if (itr + 1) % val_frequency == 0:
scheduler.step(val_acc)
else:
if epoch > last_epoch and scheduler is not None:
last_epoch = epoch
scheduler.step()
# checkpoint
if (itr + 1) % val_frequency == 0 or itr == maxItr - 1:
is_best = val_acc > best_acc
if is_best:
best_acc = val_acc
# best_model_wts = copy.deepcopy(model.state_dict())
do_checkpoint = (itr - last_checkpoint) >= checkpoint_frequency
if is_best or itr == maxItr - 1 or do_checkpoint:
last_checkpoint = itr
checkpoint_dict = {
'itr': itr + 1,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
'best_acc': best_acc
}
if scheduler is not None:
checkpoint_dict['scheduler'] = scheduler.state_dict()
save_checkpoint(checkpoint_dict,
is_best, checkpoint_folder=checkpoint_folder)
time_elapsed = time.time() - since
logger.info('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
logger.info('Best val accuracy: {:4f}'.format(best_acc))
# load best model weights
best_model_wts = torch.load(os.path.join(checkpoint_folder,
'model_best.pth.tar'))
model.load_state_dict(best_model_wts['state_dict'])
return model
def main(args):
fine_tune = not args.no_finetune
pre_train = True
lr = args.lr
input_size = args.input_size
order = 2
embedding = args.embedding_dim
model_names_list = args.model_names_list
args.exp_dir = os.path.join(args.dataset, args.exp_dir)
if args.dataset in ['cars', 'aircrafts', 'mit_indoor']:
keep_aspect = False
else:
keep_aspect = True
if args.dataset in ['aircrafts']:
crop_from_size = [(x * 256) // 224 for x in input_size]
else:
crop_from_size = input_size
if 'inat' in args.dataset:
split = {'train': 'train', 'val': 'val'}
else:
split = {'train': 'train_val', 'val': 'test'}
if len(input_size) > 1:
assert order == len(input_size)
if not keep_aspect:
input_size = [(x, x) for x in input_size]
crop_from_size = [(x, x) for x in crop_from_size]
exp_root = '../exp'
checkpoint_folder = os.path.join(exp_root, args.exp_dir, 'checkpoints')
if not os.path.isdir(checkpoint_folder):
os.makedirs(checkpoint_folder)
init_checkpoint_folder = os.path.join(
exp_root, args.exp_dir, 'init_checkpoints'
)
if not os.path.isdir(init_checkpoint_folder):
os.makedirs(init_checkpoint_folder)
# log the setup for the experiments
args_dict = vars(args)
with open(os.path.join(exp_root, args.exp_dir, 'args.txt'), 'a') as f:
f.write(json.dumps(args_dict, sort_keys=True, indent=4))
# make sure the dataset is ready
if 'inat' in args.dataset:
setup_dataset('inat')
else:
setup_dataset(args.dataset)
# ================== Craete data loader ==================================
data_transforms = {
'train': [transforms.Compose([
transforms.Resize(x[0]),
# transforms.CenterCrop(x[1]),
transforms.RandomCrop(x[1]),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) \
for x in zip(crop_from_size, input_size)],
'val': [transforms.Compose([
transforms.Resize(x[0]),
transforms.CenterCrop(x[1]),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) \
for x in zip(crop_from_size, input_size)],
}
if args.dataset == 'cub':
from CUBDataset import CUBDataset as dataset
elif args.dataset == 'cars':
from CarsDataset import CarsDataset as dataset
elif args.dataset == 'aircrafts':
from AircraftsDataset import AircraftsDataset as dataset
elif args.dataset == 'mit_indoor':
from MITIndoorDataset import MITIndoorDataset as dataset
elif 'inat' in args.dataset:
from iNatDataset import iNatDataset as dataset
if args.dataset == 'inat':
subset = None
else:
subset = args.dataset[len('inat_'):]
subset = subset[0].upper() + subset[1:]
else:
raise ValueError('Unknown dataset: %s' % task)
if 'inat' in args.dataset:
dset = {x: dataset(dset_root['inat'], split[x], subset, \
transform=data_transforms[x]) for x in ['train', 'val']}
dset_test = dataset(dset_root['inat'], 'test', subset, \
transform=data_transforms['val'])
else:
dset = {x: dataset(dset_root[args.dataset], split[x], \
transform=data_transforms[x]) for x in ['train', 'val']}
dset_test = dataset(dset_root[args.dataset], 'test', \
transform=data_transforms['val'])
dset_loader = {x: torch.utils.data.DataLoader(dset[x],
batch_size=args.batch_size, shuffle=True, num_workers=8,
drop_last=drop_last) \
for x, drop_last in zip(['train', 'val'], [True, False])}
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#======================= Initialize the model =========================
# The argument embedding is used only when tensor_sketch is True
# The argument order is used only when the model parameters are shared
# between feature extractors
model = create_bcnn_model(model_names_list, len(dset['train'].classes),
args.pooling_method, fine_tune, pre_train, embedding, order,
m_sqrt_iter=args.matrix_sqrt_iter,
fc_bottleneck=args.fc_bottleneck, proj_dim=args.proj_dim,
update_sketch=args.update_sketch, gamma=args.gamma)
model = model.to(device)
model = torch.nn.DataParallel(model)
# Setup the loss fxn
criterion = nn.CrossEntropyLoss()
#====================== Initialize optimizer ==============================
init_model_checkpoint = os.path.join(init_checkpoint_folder,
'checkpoint.pth.tar')
start_itr = 0
optim_fc = initialize_optimizer(
model,
args.init_lr,
optimizer='sgd',
wd=args.init_wd,
finetune_model=False,
proj_lr=args.proj_lr,
proj_wd=args.proj_wd,
)
logger_name = 'train_init_logger'
logger = initializeLogging(os.path.join(exp_root, args.exp_dir,
'train_init_history.txt'), logger_name)
model_train_fc = False
fc_model_path = os.path.join(exp_root, args.exp_dir, 'fc_params.pth.tar')
if not args.train_from_beginning:
if os.path.isfile(fc_model_path):
# load the fc parameters if they are already trained
print("=> loading fc parameters'{}'".format(fc_model_path))
checkpoint = torch.load(fc_model_path)
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded fc initialization parameters")
else:
if os.path.isfile(init_model_checkpoint):
# load the checkpoint if it exists
print("=> loading checkpoint '{}'".format(init_model_checkpoint))
checkpoint = torch.load(init_model_checkpoint)
start_itr = checkpoint['itr']
model.load_state_dict(checkpoint['state_dict'])
optim_fc.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint for the fc initialization")
# resume training
model_train_fc = True
else:
# Training everything from the beginning
model_train_fc = True
start_itr = 0
if model_train_fc:
# do the training
if not fine_tune:
model.eval()
model = train_model(model, dset_loader, criterion, optim_fc,
batch_size_update=256,
epoch=args.init_epoch, logger_name=logger_name, start_itr=start_itr,
checkpoint_folder=init_checkpoint_folder, fine_tune=fine_tune)
shutil.copyfile(
os.path.join(init_checkpoint_folder, 'model_best.pth.tar'),
fc_model_path)
if fine_tune:
optim = initialize_optimizer(model, args.lr, optimizer=args.optimizer,
wd=args.wd, finetune_model=fine_tune,
beta1=args.beta1, beta2=args.beta2)
scheduler = torch.optim.lr_scheduler.LambdaLR(optim,
lr_lambda=lambda epoch: 0.1 ** (epoch // 25))
logger_name = 'train_logger'
logger = initializeLogging(os.path.join(exp_root, args.exp_dir,
'train_history.txt'), logger_name)
start_itr = 0
# load from checkpoint if exist
if not args.train_from_beginning:
checkpoint_filename = os.path.join(checkpoint_folder,
'checkpoint.pth.tar')
if os.path.isfile(checkpoint_filename):
print("=> loading checkpoint '{}'".format(checkpoint_filename))
checkpoint = torch.load(checkpoint_filename)
start_itr = checkpoint['itr']
model.load_state_dict(checkpoint['state_dict'])
optim.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
print("=> loaded checkpoint '{}' (iteration{})"
.format(checkpoint_filename, checkpoint['itr']))
# parallelize the model if using multiple gpus
# if torch.cuda.device_count() > 1:
# Train the miodel
model = train_model(model, dset_loader, criterion, optim,
batch_size_update=args.batch_size_update_model,
# maxItr=args.iteration, logger_name=logger_name,
epoch=args.epoch, logger_name=logger_name,
checkpoint_folder=checkpoint_folder,
start_itr=start_itr, scheduler=scheduler)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size_update_model', default=128, type=int,
help='optimizer update the model after seeing batch_size number \
of inputs')
parser.add_argument('--batch_size', default=32, type=int,
help='size of mini-batch that can fit into gpus (sub bacth size')
parser.add_argument('--epoch', default=45, type=int,
help='number of epochs')
parser.add_argument('--init_epoch', default=25, type=int,
help='number of epochs for initializing fc layer')
parser.add_argument('--init_lr', default=1.0, type=float,
help='learning rate')
parser.add_argument('--lr', default=1e-4, type=float,
help='learning rate')
parser.add_argument('--wd', default=1e-5, type=float,
help='weight decay')
parser.add_argument('--init_wd', default=1e-8, type=float,
help='weight decay for initializing fc layer')
parser.add_argument('--optimizer', default='adam', type=str,
help='optimizer sgd|adam')
parser.add_argument('--exp_dir', default='exp', type=str,
help='foldername where to save the results for the experiment')
parser.add_argument('--train_from_beginning', action='store_true',
help='train the model from first epoch, i.e. ignore the checkpoint')
parser.add_argument('--dataset', default='cub', type=str,
help='cub | cars | aircrafts')
parser.add_argument('--input_size', nargs='+', default=[448], type=int,
help='input size as a list of sizes')
parser.add_argument('--model_names_list', nargs='+', default=['vgg'],
type=str, help='input size as a list of sizes')
parser.add_argument('--pooling_method', default='outer_product', type=str,
help='outer_product | sketch | gamma_demo | sketch_gamma_demo')
parser.add_argument('--embedding_dim', type=int, default=8192,
help='the dimension for the tnesor sketch approximation')
parser.add_argument('--matrix_sqrt_iter', type=int, default=0,
help='number of iteration for the Newtons Method approximating' + \
'matirx square rooti. Default=0 [no matrix square root]')
parser.add_argument('--fc_bottleneck', action='store_true',
help='add bottelneck to the fc layers')
parser.add_argument('--proj_dim', type=int, default=0,
help='project the dimension of cnn features to lower ' + \
'dimensionality before computing tensor product')
parser.add_argument('--proj_lr', default=1e-3, type=float,
help='learning rate')
parser.add_argument('--proj_wd', default=1e-5, type=float,
help='weight decay')
parser.add_argument('--update_sketch', action='store_true',
help='add bottelneck to the fc layers')
parser.add_argument('--gamma', default=0.5, type=float,
help='the value of gamma for gamma democratic aggregation')
parser.add_argument('--beta1', default=0.99, type=float,
help='the value of beta1 for adam')
parser.add_argument('--beta2', default=0.999, type=float,
help='the value of beta2 for adam')
parser.add_argument('--no_finetune', action='store_true',
help='not do fine tuning')
args = parser.parse_args()
main(args)