-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
189 lines (163 loc) · 5.38 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import torch
import torch.nn as nn
from torchvision import transforms
import os
from config import dset_root
import argparse
import logging
from BCNN import create_bcnn_model
import sys
pretrain_folder = "pretrained_models"
def initializeLogging(logger_name):
log = logging.getLogger(logger_name)
log.setLevel(logging.DEBUG)
log.addHandler(logging.StreamHandler(sys.stdout))
return log
def test_model(model, criterion, dset_loader, logger_name=None):
if logger_name is not None:
logger = logging.getLogger(logger_name)
device = next(model.parameters()).device
model.eval()
running_corrects = 0
for idx, all_fields in enumerate(dset_loader):
if logger_name is not None and (idx + 1) % 10 == 0:
logger.info("%d / %d" % (idx + 1, len(dset_loader)))
labels = all_fields[-2]
inputs = all_fields[:-2]
inputs = [x.to(device) for x in inputs]
labels = labels.to(device)
with torch.set_grad_enabled(False):
outputs = model(*inputs)
_, preds = torch.max(outputs, 1)
running_corrects += torch.sum(preds == labels.data)
test_acc = running_corrects.double() / len(dset_loader.dataset)
if logger_name is not None:
logger.info("Test accuracy: {:.3f}".format(test_acc))
def main(args):
model_path = os.path.join(pretrain_folder, args.pretrained_filename)
input_size = args.input_size
_ = initializeLogging("mylogger")
if args.dataset in ["cars", "aircrafts"]:
keep_aspect = False
else:
keep_aspect = True
if args.dataset in ["aircrafts"]:
crop_from_size = [(x * 256) // 224 for x in input_size]
else:
crop_from_size = input_size
if not keep_aspect:
input_size = [(x, x) for x in input_size]
crop_from_size = [(x, x) for x in crop_from_size]
data_transforms = [
transforms.Compose(
[
transforms.Resize(x[0]),
transforms.CenterCrop(x[1]),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
for x in zip(crop_from_size, input_size)
]
if args.dataset == "cub":
from CUBDataset import CUBDataset as Dataset
elif args.dataset == "cars":
from CarsDataset import CarsDataset as Dataset
elif args.dataset == "aircrafts":
from AircraftsDataset import AircraftsDataset as Dataset
else:
raise ValueError("Unknown dataset: %s" % args.dataset)
# TODO: check the split name
dset_test = Dataset(dset_root[args.dataset], "test", transform=data_transforms)
test_loader = torch.utils.data.DataLoader(
dset_test,
batch_size=args.batch_size,
shuffle=False,
num_workers=8,
drop_last=False,
)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = create_bcnn_model(
args.model_names_list,
len(dset_test.classes),
args.pooling_method,
False,
True,
args.embedding_dim,
2,
m_sqrt_iter=args.matrix_sqrt_iter,
proj_dim=args.proj_dim,
)
model = model.to(device)
model = torch.nn.DataParallel(model)
criterion = nn.CrossEntropyLoss()
if os.path.isfile(model_path):
print("=> loading checkpoint '{}'".format(model_path))
checkpoint = torch.load(model_path)
model.load_state_dict(checkpoint["state_dict"])
print("=> loaded checkpoint '{}')".format(model_path))
else:
raise ValueError("pretrained model %s does not exist" % (model_path))
test_model(model, criterion, test_loader, "mylogger")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--batch_size",
default=32,
type=int,
help="size of mini-batch that can fit into gpus",
)
parser.add_argument(
"--pretrained_filename", type=str, help="file name of pretrained model",
)
parser.add_argument(
"--dataset", default="cub", type=str, help="cub | cars | aircrafts"
)
parser.add_argument(
"--input_size",
nargs="+",
default=[448],
type=int,
help="input size as a list of sizes",
)
parser.add_argument(
"--model_names_list",
nargs="+",
default=["vgg"],
type=str,
help="input size as a list of sizes",
)
parser.add_argument(
"--pooling_method",
default="outer_product",
type=str,
help="outer_product | sketch | gamma_demo | sketch_gamma_demo",
)
parser.add_argument(
"--embedding_dim",
type=int,
default=8192,
help="the dimension for the tnesor sketch approximation",
)
parser.add_argument(
"--matrix_sqrt_iter",
type=int,
default=0,
help="number of iteration for the Newtons Method approximating"
+ "matirx square rooti. Default=0 [no matrix square root]",
)
parser.add_argument(
"--proj_dim",
type=int,
default=0,
help="project the dimension of cnn features to lower "
+ "dimensionality before computing tensor product",
)
parser.add_argument(
"--gamma",
default=0.5,
type=float,
help="the value of gamma for gamma democratic aggregation",
)
args = parser.parse_args()
main(args)