-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathmain.py
144 lines (125 loc) · 5.48 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from __future__ import print_function
import argparse
import pyvarinf
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--prior', type=str, default='gaussian', metavar='P',
help='prior used (default: gaussian)',
choices=['gaussian', 'mixtgauss', 'conjugate', 'conjugate_known_mean'])
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
# setting up prior parameters
prior_parameters = {}
if args.prior != 'gaussian':
prior_parameters['n_mc_samples'] = 1
if args.prior == 'mixtgauss':
prior_parameters['sigma_1'] = 0.02
prior_parameters['sigma_2'] = 0.2
prior_parameters['pi'] = 0.5
if args.prior == 'conjugate':
prior_parameters['mu_0'] = 0.
prior_parameters['kappa_0'] = 3.
prior_parameters['alpha_0'] = .5
prior_parameters['beta_0'] = .5
if args.prior == 'conjugate_known_mean':
prior_parameters['alpha_0'] = .5
prior_parameters['beta_0'] = .5
prior_parameters['mean'] = 0.
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
self.bn1 = nn.BatchNorm2d(10)
self.bn2 = nn.BatchNorm2d(20)
def forward(self, x):
x = self.bn1(F.relu(F.max_pool2d(self.conv1(x), 2)))
x = self.bn2(F.relu(F.max_pool2d(self.conv2(x), 2)))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x)
model = Net()
var_model = pyvarinf.Variationalize(model)
var_model.set_prior(args.prior, **prior_parameters)
if args.cuda:
var_model.cuda()
optimizer = optim.Adam(var_model.parameters(), lr=args.lr)
def train(epoch):
var_model.train()
for batch_idx, (data, target) in enumerate(train_loader):
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = var_model(data)
loss_error = F.nll_loss(output, target)
loss_prior = var_model.prior_loss() / 60000
loss = loss_error + loss_prior
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tLoss error: {:.6f}\tLoss weights: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data[0], loss_error.data[0], loss_prior.data[0]))
def test(epoch):
var_model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = var_model(data)
test_loss += F.nll_loss(output, target).data[0]
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(target.data).cpu().sum()
test_loss = test_loss
test_loss /= len(test_loader) # loss function already averages over batch size
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
for epoch in range(1, args.epochs + 1):
train(epoch)
test(epoch)