-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparse_arg.py
executable file
·68 lines (59 loc) · 3.83 KB
/
parse_arg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Tue May 8 10:18:43 2018
@author: cuijiaxu
"""
import argparse
def parse_arg():
parser = argparse.ArgumentParser('')
parser.add_argument('--run', default=False,
help='flag for running this model (default: False), if you want to run, you should add [--run=True] option.')
parser.add_argument('--rseed', default=None,
help='random seed (default: None)')
parser.add_argument('--conv_layers', default=5,
help='the number of graph convolution layers (default: 5)')
parser.add_argument('--dnn_layers', default=5,
help='the number of fully connected layers (default: 5)')
parser.add_argument('--conv_hidden', default=48,
help='the number of hidden units on convolution layers (default: 48)')
parser.add_argument('--pool_hidden', default=50,
help='the number of hidden units on pooling layer (default: 50)')
parser.add_argument('--dnn_hidden', default=45,
help='the number of hidden units on fully connected layers (default: 45)')
parser.add_argument('--conv_act_type', default=2,
help='the type of activation function on convolution layers 0:Identity, 1:ReLU, 2:tanH (default: 2)')
parser.add_argument('--pool_act_type', default=0,
help='the type of activation function on pooling layer 0:Identity, 1:ReLU, 2:tanH (default: 0)')
parser.add_argument('--dnn_act_type', default=2,
help='the type of activation function on fully connected layers 0:Identity, 1:ReLU, 2:tanH (default: 2)')
parser.add_argument('--model_name', default="rgcn_with_reg",
help='choose model {"rgcn_with_reg","rgcn_no_reg"} (default: "rgcn_with_reg")')
parser.add_argument('--learning_rate', default=1e-4,
help='set learning_rate (default: 1e-4)')
parser.add_argument('--dropout', default=0.03,
help='set dropout (default: 0.03). when you use a large dataset (e.g., zinc), you can set dropout to 0.0 to increase the capacity of model')
parser.add_argument('--weight_decay', default=0.07,
help='set weight_decay (default: 0.07). when you use a large dataset (e.g., zinc), you can set weight_decay to 1e-5 to increase the capacity of model')
parser.add_argument('--epochs', default=2000,
help='set epochs (default: 2000)')
parser.add_argument('--ALPHA', default=0.8,
help='set ALPHA (default: 0.8)')
parser.add_argument('--basis_num', default=4,
help='the number of basis used in basis regularization (default: 4)')
parser.add_argument('--inputvec_dim', default=6,
help='the number of dimension of preknown global attributes (default: 6)')
parser.add_argument('--dataset', default="delaney-processed",
help='the name of data set {"delaney-processed" or "20k_rndm_zinc_drugs_clean_3"} (default: "delaney-processed")')
parser.add_argument('--topN', default=None,
help='the number of graphs used for doing this experiment in data set, None for all (default: None)')
parser.add_argument('--initn', default=20,
help='initial evaluation times (default: 20)')
parser.add_argument('--maxiter', default=200,
help='the maximal evaluation times (default: 200)')
parser.add_argument('--resample_period', default=20,
help='the period of resampling (default: 20)')
parser.add_argument('--relearn_NN_period', default=20,
help='the period of relearning network (default: 20)')
args = parser.parse_args()
return args