-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDGBO.py
executable file
·269 lines (235 loc) · 9.69 KB
/
DGBO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 30 10:24:07 2018
@author: cuijiaxu
"""
import random
import time, sys
import numpy as np
import pylab as pl
import networkx as nx
import scipy.sparse as sp
import ChooseNext
import AdaptiveBasis
import base_prior
import parse_arg
import DeepSurrogateModel
##
import load_data
##
evalnum=0
def load_candidates(info):
if info.gcn==True:
smile_lists,edge_lists,feature_lists,label_lists,attr_lists=load_data.load_data(info.dataset,topN=topN)
cans=[]
#attr_lists=[]
for idx in range(len(smile_lists)):
if idx%500==0:
print "prepocessed %s/%s"%(idx,len(smile_lists))
num_nodes=feature_lists[idx].shape[0]
adjs=[]
for rel_idx in range(len(edge_lists[idx])):
num_edges=len(edge_lists[idx][rel_idx])
edges=np.array(edge_lists[idx][rel_idx],dtype=np.integer).reshape(num_edges,2)
#print rel_idx,"edges:",edges
adj = sp.coo_matrix((np.ones(edges.shape[0]*2), (np.array(list(edges[:,0])+list(edges[:,1])),np.array(list(edges[:,1])+list(edges[:,0])))),shape=(num_nodes, num_nodes), dtype=np.float32)
##this line is just for model == 'rgcn_no_reg' or model == 'rgcn_with_reg'
adj=sp.coo_matrix(DeepSurrogateModel.preprocess_adj(adj))
###
adjs.append(adj)
#print adj.todense()
feature=np.array(feature_lists[idx],dtype=np.float32)
if len(attr_lists[idx])==0:
#---------
#"There aren't global attributes, so we add the following features as global attributes."
#---------
G=nx.Graph()
for rel_idx in range(len(edge_lists[idx])):
G.add_edges_from(edge_lists[idx][rel_idx])
nodenum=G.number_of_nodes()
edgenum=G.number_of_edges()
avgdeg=np.mean(nx.degree_centrality(G).values())
avgbet=np.mean(nx.betweenness_centrality(G).values())
avgclo=np.mean(nx.closeness_centrality(G).values())
avgclu=nx.average_clustering(G)
attr=np.array([nodenum,edgenum,avgdeg,avgbet,avgclo,avgclu])
else:
attr=np.array(attr_lists[idx])
cans.append([idx,adjs,feature,attr])
#np.random.shuffle(cans)######
return np.array(cans)
else:
return np.linspace(0,1,100).reshape(100,1)
def load_y(data,info):
y=load_data.load_data_y(info.dataset,topN=topN)
return np.array(y)
def evaluate(info,x):
print "evaluate %s ..."%(evalnum)
start = time.time()
if info.gcn==True:
y=evaluate_a_graph(x)
else:
y=evaluate_a_vector(x)
pl.figure(3)
pl.scatter(x,y)
global evalnum
evalnum+=1
end = time.time()
print "feedback : %s (COST %s)"%(y,end-start)
return y
def evaluate_a_graph(x):
y=data.y[x[0]]
return y
def evaluate_a_vector(x):
y=np.sinc(np.array(x).reshape(1,1) * 10 - 5).sum(axis=1)[:, None][0,0]
return y
def initialization(data,n,info):
print "-----------initialization-----------"
xlist=np.linspace(0,len(data.candidates)-1,len(data.candidates))
xlistinit=[]
if len(data.candidates)%n==0:
delta=len(data.candidates)/n
else:
delta=len(data.candidates)/n+1
for i in range(n):
xlistinit.append(random.sample(xlist[i*delta:min((i+1)*delta,len(data.candidates))],1)[0])
xlist=xlistinit
xlist=np.array(xlist,dtype=np.integer)
for i in range(n):
print "initialization [%s] ..."%(i)
y=evaluate(info,data.candidates[xlist[i]])
info.add(xlist[i],y)
basis=AdaptiveBasis.AdaptiveBasis(data,info,data.candidates[info.observedx],True)
info.refresh_phi(basis)
def run_one(data,i,info):
print "-----------iteration [%s]-----------"%(i)
start = time.time()
info.iter=i
Next,val=ChooseNext.ChooseNext(data,info)
if info.eval_jump(info.forcejump,Next):
Next_jump=random.randint(0,len(data.candidates)-1)
print "Force jump from [%s] to [%s]."%(Next,Next_jump)
Next=Next_jump
y=evaluate(info,data.candidates[Next])
info.add(Next,y)
relearn_NN=False
if (i+1)%info.relearn_NN_period == 0:
relearn_NN=True
info.refresh_phi(AdaptiveBasis.AdaptiveBasis(data,info,data.candidates[info.observedx],relearn_NN))
end = time.time()
print "iteration [%s] COST %s"%(i,end-start)
#info.plot_curve()
def run_loop(data,maxiter,info):
for i in range(maxiter):
run_one(data,i,info)
if max(info.observedy)>=max(data.y):
info.observedx=info.observedx+[info.observedx[-1] for fill_idx in range(maxiter-(i+1))]
info.observedy=info.observedy+[info.observedy[-1] for fill_idx in range(maxiter-(i+1))]
break
def BO_process(data,params,info):
initialization(data,params.initn,info)
#info.plot_curve()
run_loop(data,params.maxiter,info)
class params():
def __init__(self, initn, maxiter):
self.initn = initn
self.maxiter = maxiter
self.y=None
class data():
def __init__(self):
self.candidates = None
self.y=None
class store():
def __init__(self,rseed, rng,resample_period=10,relearn_NN_period=10,forcejump=3,gcn=True,dataset="datasets/synthetic_datasets"):
self.observedx = []
self.observedy = []
self.phi_matrix = []
self.dataset=dataset
self.rseed=rseed
self.rng=rng
# Prior for alpha=1/sigma2
self.ln_prior_alpha=base_prior.LognormalPrior(sigma=0.1, mean=-10, rng=self.rng)
# Prior for noise^2 = 1 / beta
self.prior_noise2 = base_prior.HorseshoePrior(scale=0.1, rng=self.rng)
self.hyp_samples=[]
self.resample_period=resample_period
self.relearn_NN_period=relearn_NN_period
self.iter=0
self.pos=[]
self.forcejump=forcejump
self.w_m0=np.zeros(dnn_hidden).reshape(dnn_hidden,1)
self.gcn=gcn
self.All_cand_node_num=0
if self.gcn==True:
self.dgcn=DeepSurrogateModel.CombDGCNWithDNN(model=model_name,basis_num=basis_num,conv_layers=conv_layers, conv_hidden=conv_hidden, pool_hidden=pool_hidden, conv_act_type=conv_act_type, pool_act_type=pool_act_type, learning_rate=learning_rate, epochs=epochs, dropout=dropout, weight_decay=weight_decay,dnn_layers=dnn_layers, dnn_hidden=dnn_hidden,dnn_act_type=dnn_act_type,inputvec_dim=inputvec_dim,ALPHA=ALPHA)
def eval_jump(self,lastnum,newx):
for i in self.observedx[-min(lastnum,len(self.observedx)):]:
if newx!=i:
return False
return True
def add(self,x,y):
self.observedx=self.observedx+[x]
self.observedy=self.observedy+[y]
def add_phi(self,phi,num):
if num==1:
self.phi_matrix=self.phi_matrix+[phi]
else:
self.phi_matrix=self.phi_matrix+list(phi)
#store last layer output of the retrained neural network
def refresh_phi(self,phi_matrix):
self.phi_matrix=phi_matrix
def set_w_m0(self,w_m0):
self.w_m0=w_m0
def print_observed(self):
with open("results/result-RGBODGCN-r%s.txt"%self.rseed, 'w') as fout:
for i in range(len(self.observedx)):
fout.write("%s\t%s\n"%(self.observedx[i],self.observedy[i]))
print self.observedx,self.observedy
def plot_curve(self):
pl.figure(1)
pl.scatter(np.linspace(1,len(self.observedy),len(self.observedy)),self.observedy,marker='+',c='k')
curbest=[np.max(self.observedy[0:i+1]) for i in range(len(self.observedy))]
pl.plot(np.linspace(1,len(self.observedy),len(self.observedy)),curbest,'r')
pl.title('Iteration # = %s, best = %s'%(self.iter,max(curbest)))
pl.savefig("results/curve-RGBODGCN-r%s.pdf"%self.rseed)
#pl.show()
#pl.close(1)
if __name__ == "__main__":
args=parse_arg.parse_arg()
if args.run==False:
print "You need to open the [--run=True] flag to run the model, or open [-h] option to see the help message."
else:
conv_layers=args.conv_layers
conv_hidden=args.conv_hidden
pool_hidden=args.pool_hidden
conv_act_type=args.conv_act_type
pool_act_type=args.pool_act_type
learning_rate=args.learning_rate
epochs=args.epochs
dropout=args.dropout
weight_decay=args.weight_decay
dnn_layers=args.dnn_layers
dnn_hidden=args.dnn_hidden
dnn_act_type=args.dnn_act_type
model_name=args.model_name
ALPHA=args.ALPHA
rseed=args.rseed
dataset=args.dataset
basis_num=args.basis_num
inputvec_dim=args.inputvec_dim
topN=args.topN
params.initn=args.initn
params.maxiter=args.maxiter-args.initn
resample_period=args.resample_period
relearn_NN_period=args.relearn_NN_period
random.seed(rseed)
np.random.seed(rseed)
rng=np.random.RandomState(rseed)
rseed="%s-%s-%s-%s-%s-%s-%s-%s-%s-%s-Comb-%s-%s-%s-alpha%s-%s_%s_%s_20k"%(rseed,conv_layers,conv_hidden,pool_hidden,conv_act_type,pool_act_type,learning_rate,epochs,dropout,weight_decay,dnn_layers,dnn_hidden,dnn_act_type,ALPHA,dataset,model_name,basis_num)
info=store(rseed=rseed,rng=rng,resample_period=resample_period,relearn_NN_period=relearn_NN_period,dataset="datasets/%s"%dataset)
data=data()
data.candidates=load_candidates(info)
data.y=load_y(data,info)
BO_process(data,params,info)
info.print_observed()