-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChooseNext.py
executable file
·245 lines (201 loc) · 7.21 KB
/
ChooseNext.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 30 10:35:40 2018
@author: cuijiaxu
"""
import numpy as np
import time
import scipy.stats
import pylab as pl
import emcee
#import scipy.optimize as op
#import scipy.stats as sps
import AdaptiveBasis
lnnoise2_lower=-13.0
lnnoise2_upper=1.0
lnsigma2_lower=lnnoise2_lower
lnsigma2_upper=lnnoise2_upper
def ChooseNext(data,info):
start = time.time()
start1=time.time()
phi_matrix=np.array(info.phi_matrix)
n,k=phi_matrix.shape
#sampling
Ainvs=[]
w_mNs=[]
NSample=20
if info.iter%info.resample_period==0:
samples=sampler(info,phi_matrix, np.array(info.observedy).reshape(n,1),NSample)
info.hyp_samples=samples
else:
samples=info.hyp_samples
for i in range(NSample):
alpha=samples[i,0]
beta=samples[i,1]
A=beta * np.dot(phi_matrix.T, phi_matrix)
A += np.eye(k) * alpha
Ainv=np.linalg.inv(A)
y=np.array(info.observedy).reshape(n,1)
w_mN=Ainv.dot(alpha*info.w_m0+beta*phi_matrix.T.dot(y))
Ainvs.append(Ainv)
w_mNs.append(w_mN)
#print "mean(w)=%s"%(w_mN)
end1=time.time()
print "Sampling cost: %s"%(end1-start1)
start2=time.time()
vals=[]
mmus=[]
vvars=[]
n,k=phi_matrix.shape
x_can=np.linspace(0,len(data.candidates)-1,len(data.candidates),dtype=np.integer)
x_can=list(set(list(x_can))-set(info.observedx))
np.random.shuffle(x_can)
random_size=5000
random_can=list(x_can[0:min(random_size,len(x_can))])
phi_star=[]
for x_idx in random_can:
xstar=data.candidates[x_idx]
phi_star.append(AdaptiveBasis.AdaptiveBasis(data,info,xstar,False,True))
phi_star=np.array(phi_star).reshape(len(random_can),k)
for j in range(NSample):
val,mu,var=EI(data,info,phi_matrix,info.observedy,1.0/samples[j,0],1.0/samples[j,1],Ainvs[j],w_mNs[j],data.candidates[random_can],phi_star)
vals.append(val)
mmus.append(mu)
vvars.append(var)
#print val,val.shape
vvals=np.mean(np.array(vals),axis=0)
mmus=np.mean(np.array(mmus),axis=0)
vvars=np.mean(np.array(vvars),axis=0)
#vvals[info.observedx]=0
Next=random_can[np.argmax(vvals)]
maxVal=max(vvals)
end2=time.time()
print "Max acquisition function cost: %s"%(end2-start2)
end = time.time()
print "Choose next point COST %s"%(end-start)
info.phi_matrix=list(info.phi_matrix)
print "next idx=%s, acq=%s"%(Next,maxVal)
return Next,maxVal
def UCB(data,info,phi_matrix,y,sigma2,noise2,Ainv,w_mN,xstar,phi_star):
mu,var=predict(data,info,phi_matrix,sigma2,noise2,Ainv,w_mN,xstar,phi_star)
var[var < 1e-25]=1e-25
result=mu+0.01*np.sqrt(var)
#print mu,var
return result,mu,var
def EI(data,info,phi_matrix,y,sigma2,noise2,Ainv,w_mN,xstar,phi_star):
mu,var=predict(data,info,phi_matrix,sigma2,noise2,Ainv,w_mN,xstar,phi_star)
var[var<1e-25]=1e-25
maxy=np.max(y)
std=np.sqrt(var)
#print "mu=%s,std=%s"%(mu,std)
gamma=(mu-maxy)/std
#print "gamma=%s"%gamma
pdfgamma=scipy.stats.norm.pdf(gamma,0,1)
cdfgamma=scipy.stats.norm.cdf(gamma,0,1)
result=std*(pdfgamma+gamma*cdfgamma)
#print mu,var
return result,mu,var
def predict(data,info,phi_matrix,sigma2,noise2,Ainv,w_mN,xstar,phi_star):
#print Ainv,w_mN
n,k=phi_matrix.shape
phi_star=phi_star
mu=phi_star.dot(w_mN)
var=np.diag(np.dot(np.dot(phi_star, Ainv), phi_star.T))+noise2
#print var,noise2
return np.array(mu).reshape(len(xstar),),np.array(var).reshape(len(xstar),)
def lnprior(theta, info):
lnalpha, lnbeta = theta
"""
if lnnoise2_lower < lnnoise2 < lnnoise2_upper and lnsigma2_lower < lnsigma2 < lnsigma2_upper:
return 0.0
return -np.inf
"""
#lnalpha=np.log(1.0/np.exp(lnnoise2))
#lnbeta=np.log(1.0/np.exp(lnsigma2))
lp = 0
lp += info.ln_prior_alpha.lnprob(lnalpha)
lp += info.prior_noise2.lnprob(1.0/lnbeta)
return lp
"""
# sigma2
if np.any(lnsigma2 == 0.0):
return np.inf
scale=0.1
logp_sigma2=np.log(np.log(1 + 3.0 * (scale / np.exp(lnsigma2)) ** 2))
#noise2
mean=-10.0
sigma=0.1
logp_noise2=sps.lognorm.logpdf(lnnoise2, sigma, loc=mean)
return logp_sigma2+logp_noise2
"""
#marginal_log_likelihood
def lnlik(theta,phi_matrix, y):
lnalpha, lnbeta =theta
n,k=phi_matrix.shape
alpha=np.exp(lnalpha)
beta=np.exp(lnbeta)
A=beta * np.dot(phi_matrix.T, phi_matrix)
A += np.eye(k) * alpha
Ainv=np.linalg.inv(A)
m=beta * np.dot(Ainv, phi_matrix.T)
m = np.dot(m, y)
#logp_=(k/2.0)*(np.log(1.0/sigma2))+(n/2.0)*(np.log(1.0/noise2))-(n/2.0)*(np.log(2*np.pi))-(0.5/noise2)*((y-phi_matrix.dot(m)).T.dot((y-phi_matrix.dot(m))))-(0.5/sigma2)*(m.T.dot(m))-0.5*(np.log(np.linalg.det(A)))
mll = k / 2 * np.log(alpha)
mll += n / 2 * np.log(beta)
mll -= n / 2 * np.log(2 * np.pi)
mll -= beta / 2. * np.linalg.norm(y - np.dot(phi_matrix, m), 2)
mll -= alpha / 2. * np.dot(m.T, m)
mll -= 0.5 * np.log(np.linalg.det(A))
return mll[0,0]
def lnprob(theta, info, phi_matrix, y):
if np.any((-5 > theta) + (theta > 10)):
return -np.inf
lp = lnprior(theta,info)
"""
if not np.isfinite(lp):
return -np.inf
"""
lp = lp + lnlik(theta,phi_matrix, y)
if np.isnan(lp)==True or not np.isfinite(lp):
return -np.inf
return lp
def sampler(info,phi_matrix, y, sample_num=20):
#nll = lambda *args: -lnlik(*args)
#result = op.minimize(nll, [np.log(1e-3), np.log(1.0)], args=(phi_matrix, y))
#lnnoise2, lnsigma2 = result["x"]
ndim, nwalkers = 2, sample_num
burnin_step=2000
chain_length=2000
#pos = [result["x"] + 1e-4*np.random.randn(ndim) for i in range(nwalkers)]
sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, args=(info,phi_matrix, y))
if info.iter==0:
#Do a burn-in in the first iteration
"""
lnlow=lnnoise2_lower
lnup=lnnoise2_upper
info.pos=info.rng.uniform(lnlow,lnup,size=(sample_num,ndim))
"""
p0 = np.zeros([sample_num, ndim])
p0[:, 0] = info.ln_prior_alpha.sample_from_prior(sample_num)[:, 0]
# Noise sigma^2
noise2 = info.prior_noise2.sample_from_prior(sample_num)[:, 0]
# Beta
p0[:, -1] = np.log(1.0 / np.exp(noise2))
info.pos = p0
"""
p0 = np.zeros([sample_num, ndim])
#sampling log noise2 from prior
scale=0.1
lamda = np.abs(info.rng.standard_cauchy(size=sample_num))
p0[:,-1] = np.log(1.0/np.exp(np.log(np.abs(info.rng.randn() * lamda * scale))[:, np.newaxis][:, 0]))
#sampling log sigma2 from prior
mean=-10.0
sigma=0.1
p0[:,0] = info.rng.lognormal(mean=mean,sigma=sigma,size=sample_num)[:, np.newaxis][:, 0]
"""
info.pos, _, _ =sampler.run_mcmc(info.pos, burnin_step,rstate0=info.rng)
info.pos, _, _ =sampler.run_mcmc(info.pos, chain_length,rstate0=info.rng)
samples = np.exp(sampler.chain[:, -1])
#print "samples=%s"%samples
return samples