diff --git a/agnpy/constraints/spectral_constraints.py b/agnpy/constraints/spectral_constraints.py index 53b7f89..7b0f6aa 100644 --- a/agnpy/constraints/spectral_constraints.py +++ b/agnpy/constraints/spectral_constraints.py @@ -34,7 +34,7 @@ def gamma_max_larmor(self): .. math:: - R_L < R_b \Rightarrow \gamma_{\mathrm{max}} < \frac{R_b e B}{m_e c^2} + R_L \u2264 R_b \Rightarrow \gamma_{\mathrm{max}} \u2264 \frac{R_b e B}{m_e c^2} """ return (self.blob.R_b * e * self.blob.B_cgs / mec2).to_value("") @@ -42,15 +42,15 @@ def gamma_max_larmor(self): def gamma_max_ballistic(self): r"""Naive estimation of maximum Lorentz factor of electrons comparing acceleration time scale with ballistic time scale. - For the latter we assume that the particles crosses the blob radius. + For the latter we assume that the particles cross the blob radius. .. math:: (\mathrm{d}E/\mathrm{d}t)_{\mathrm{acc}} &= \xi c E / R_L \\ T_{\mathrm{acc}} &= E \,/\,(\mathrm{d}E/\mathrm{d}t)_{\mathrm{acc}} = R_L / (\xi c) \\ T_{\mathrm{bal}} &= R_b / c \\ - T_{\mathrm{acc}} &< T_{\mathrm{bal}} - \Rightarrow \gamma_{\mathrm{max}} < \frac{\xi R_b e B}{m_e c^2} + T_{\mathrm{acc}} \u2264 T_{\mathrm{bal}} + \Rightarrow \gamma_{\mathrm{max}} \u2264 \frac{\xi R_b e B}{m_e c^2} """ return self.blob.xi * self.gamma_max_larmor @@ -63,7 +63,7 @@ def gamma_max_synch(self): (\mathrm{d}E/\mathrm{d}t)_{\mathrm{acc}} &= \xi c E / R_L \\ (\mathrm{d}E/\mathrm{d}t)_{\mathrm{synch}} &= 4 / 3 \sigma_T c U_B \gamma^2 \\ (\mathrm{d}E/\mathrm{d}t)_{\mathrm{acc}} &= (\mathrm{d}E/\mathrm{d}t)_{\mathrm{synch}} - \Rightarrow \gamma_{\mathrm{max}} < \sqrt{\frac{6 \pi \xi e}{\sigma_T B}} + \Rightarrow \gamma_{\mathrm{max}} = \sqrt{\frac{6 \pi \xi e}{\sigma_T B}} """ return np.sqrt( 6 * np.pi * self.blob.xi * e / (sigma_T * self.blob.B_cgs) @@ -77,9 +77,9 @@ def gamma_max_SSC(self): .. math:: (\mathrm{d}E/\mathrm{d}t)_{\mathrm{acc}} &= \xi c E / R_L \\ - (\mathrm{d}E/\mathrm{d}t)_{\mathrm{SSC}} &= 4 / 3 \sigma_T c U_{\mathrm{synch}} \gamma^2 \\ + (\mathrm{d}E/\mathrm{d}t)_{\mathrm{SSC}} &= 4 / 3 \sigma_T c U_{\mathrm{SSC}} \gamma^2 \\ (\mathrm{d}E/\mathrm{d}t)_{\mathrm{acc}} &= (\mathrm{d}E/\mathrm{d}t)_{\mathrm{SSC}} - \Rightarrow \gamma_{\mathrm{max}} < \sqrt{\frac{3 \xi e B }{\sigma_T U_SSC}} + \Rightarrow \gamma_{\mathrm{max}} = \sqrt{\frac{3 \xi e B }{4 \sigma_T U_\mathrm{SSC}}} """ return np.sqrt( 3 @@ -95,7 +95,7 @@ def gamma_max_EC_DT(self, dt, r=0 * u.cm): WARNING: assumes Thomson regime .. math:: - \gamma_{\mathrm{max}} = \sqrt{\frac{3 \xi e B }{ \sigma_T U'_\mathrm{ext}}} + \gamma_{\mathrm{max}} = \sqrt{\frac{3 \xi e B }{4 \sigma_T U'_\mathrm{ext}}} """ return np.sqrt( 3 * self.blob.xi * e * self.blob.B_cgs / (4 * sigma_T * dt.u(r, self.blob))