From a60c821e53b5391d59efc97666efeedaf0bd1c9c Mon Sep 17 00:00:00 2001 From: Columbus240 <8899730+Columbus240@users.noreply.github.com> Date: Fri, 17 Jun 2022 09:44:07 +0200 Subject: [PATCH] [B] Move FiniteTypes.finite_couple to Finite_sets This ensures that `FiniteTypes.v` contains only lemmas & theorems concerning `FiniteT`. Use `Finite_sets.finite_couple` instead now. --- theories/ZornsLemma/CountableTypes.v | 2 +- theories/ZornsLemma/FiniteTypes.v | 8 -------- theories/ZornsLemma/Finite_sets.v | 12 ++++++++++-- 3 files changed, 11 insertions(+), 11 deletions(-) diff --git a/theories/ZornsLemma/CountableTypes.v b/theories/ZornsLemma/CountableTypes.v index 3a432639..9dc1ca55 100644 --- a/theories/ZornsLemma/CountableTypes.v +++ b/theories/ZornsLemma/CountableTypes.v @@ -2,7 +2,7 @@ From Coq Require Export Relation_Definitions QArith ZArith. From Coq Require Import Arith ArithRing FunctionalExtensionality Program.Subset ClassicalChoice. From ZornsLemma Require Import InfiniteTypes CSB DecidableDec - DependentTypeChoice. + DependentTypeChoice Finite_sets. From ZornsLemma Require Export FiniteTypes IndexedFamilies. Local Close Scope Q_scope. diff --git a/theories/ZornsLemma/FiniteTypes.v b/theories/ZornsLemma/FiniteTypes.v index fff37951..8779d224 100644 --- a/theories/ZornsLemma/FiniteTypes.v +++ b/theories/ZornsLemma/FiniteTypes.v @@ -979,11 +979,3 @@ Proof. + intros. destruct x as [[]|]; intuition. + intros. destruct y as [|]; intuition. Qed. - -Lemma finite_couple {X} (x y : X) : - Finite (Couple x y). -Proof. - rewrite <- Couple_as_union. - apply Union_preserves_Finite. - all: apply Singleton_is_finite. -Qed. diff --git a/theories/ZornsLemma/Finite_sets.v b/theories/ZornsLemma/Finite_sets.v index f04fe76e..88b27415 100644 --- a/theories/ZornsLemma/Finite_sets.v +++ b/theories/ZornsLemma/Finite_sets.v @@ -1,6 +1,14 @@ From Coq Require Import Classical. -From Coq Require Export Finite_sets. -From ZornsLemma Require Import EnsemblesImplicit FiniteImplicit. +From Coq Require Export Finite_sets Finite_sets_facts. +From ZornsLemma Require Import EnsemblesImplicit FiniteImplicit Powerset_facts. + +Lemma finite_couple {X} (x y : X) : + Finite (Couple x y). +Proof. + rewrite <- Couple_as_union. + apply Union_preserves_Finite. + all: apply Singleton_is_finite. +Qed. (* This is like a choice property for finite sets. And [P] is about pairs, so that's the meaning of the name. It is similar to