From 79ea891a88aa80af3966f20808550e67fdc9b01f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Pierre-Marie=20P=C3=A9drot?= Date: Fri, 5 May 2023 10:03:01 +0200 Subject: [PATCH] Adapt w.r.t. coq/coq#17564. --- reals/stdlib/CMTPositivity.v | 2 +- util/Qdlog.v | 8 ++++---- 2 files changed, 5 insertions(+), 5 deletions(-) diff --git a/reals/stdlib/CMTPositivity.v b/reals/stdlib/CMTPositivity.v index dd1646935..c6deb632e 100644 --- a/reals/stdlib/CMTPositivity.v +++ b/reals/stdlib/CMTPositivity.v @@ -196,7 +196,7 @@ Lemma IcontinuousClassic -> ElemIntegralContinuous I. Proof. intros E I Ihomogeneous Iadd cont f fn fL fnL nonneg intMaj. - specialize (cont f) as [[Z [ZL Zpos]] cont]. + rename cont into cont0; specialize (cont0 f); edestruct cont0 as [[Z [ZL Zpos]] cont]; clear cont0. destruct intMaj as [l [lcv lmaj]]. destruct (Rmult_continuous_zero (I Z ZL + 1) (I f fL - l)) as [alpha [alphapos alphamaj]]. diff --git a/util/Qdlog.v b/util/Qdlog.v index 5aafdd335..e3df28940 100644 --- a/util/Qdlog.v +++ b/util/Qdlog.v @@ -170,7 +170,7 @@ Lemma Qdlog_bounded_nonneg (b : nat) (n : Z) (x : Q) : 0 ≤ Qdlog_bounded b n x. Proof. revert x. induction b; unfold Qdlog_bounded; [reflexivity |]. - intros. case (decide_rel _); intros; [reflexivity |]. + intros. case (decide_rel); intros; [reflexivity |]. apply semirings.nonneg_plus_compat ; [easy | apply IHb]. Qed. @@ -180,7 +180,7 @@ Proof. intros En Ex. unfold Qdlog. generalize (Z.abs_nat (Qdlog2 x)). intros b. induction b; simpl; [reflexivity |]. - case (decide_rel _); intros E; [reflexivity |]. + case (decide_rel); intros E; [reflexivity |]. destruct E. apply orders.le_lt_trans with 1; try assumption. apply orders.lt_le_trans with 2. @@ -195,7 +195,7 @@ Proof. change (b1 ≡ b2) in Eb. change (n1 ≡ n2) in En. subst. revert x1 x2 Ex. induction b2; simpl; [reflexivity |]. intros x1 x2 Ex. - case (decide_rel _); case (decide_rel _); intros E1 E2. + case (decide_rel); case (decide_rel); intros E1 E2. reflexivity. destruct E1. now rewrite <-Ex. destruct E2. now rewrite Ex. @@ -223,7 +223,7 @@ Proof. apply (antisymmetry (≤)); try assumption. now apply Qdlog2_nonneg. intros x Eb Ex. - unfold Qdlog_bounded. case (decide_rel _); [intuition |]; intros E. + unfold Qdlog_bounded. case (decide_rel); [intuition |]; intros E. apply orders.not_lt_le_flip in E. assert (x = 'n * (x / 'n)) as Ex2. rewrite (commutativity x), associativity.