@@ -12,7 +12,7 @@ In this work, MRC model is regarded as a two-stage Encoder-Decoder architecture.
12
12
13
13
![ ] ( figures/overview.png )
14
14
15
- ### Encoder:
15
+ ## Encoder:
16
16
17
17
1 ) Language Units
18
18
@@ -28,7 +28,7 @@ In this work, MRC model is regarded as a two-stage Encoder-Decoder architecture.
28
28
29
29
[ LIMIT-BERT : Linguistic Informed Multi-Task BERT] ( https://arxiv.org/pdf/1910.14296.pdf )
30
30
31
- 3) Commonsense Injection
31
+ 3 ) Commonsense Injection
32
32
33
33
[ Multi-choice Dialogue-Based Reading Comprehension with Knowledge and Key Turns] ( https://arxiv.org/abs/2004.13988 )
34
34
@@ -44,9 +44,9 @@ As part of the techniques in our Retro-Reader paper:
44
44
45
45
[ Retrospective Reader for Machine Reading Comprehension] ( https://arxiv.org/abs/2001.09694 )
46
46
47
- #### Answer Verification
47
+ ### Answer Verification
48
48
49
- ** Multitask-style verification**
49
+ ** 1) Multitask-style verification**
50
50
51
51
We evaluate different loss functions
52
52
@@ -60,7 +60,7 @@ We evaluate different loss functions
60
60
61
61
Train an external verifier (` run_cls.py ` )
62
62
63
- #### Matching Network
63
+ Matching Network
64
64
65
65
* Cross Attention* (` run_squad_seq_trm.py ` )
66
66
@@ -76,11 +76,11 @@ Train an external verifier (`run_cls.py`)
76
76
77
77
[ Semantics-Aware Inferential Network for Natural Language Understanding] ( https://arxiv.org/abs/2004.13338 )
78
78
79
- #### Answer Dependency
79
+ ### Answer Dependency
80
80
81
81
Model answer dependency (start + seq -> end) (` run_squad_dep.py ` )
82
82
83
- #### Retrospective Reader
83
+ ### Retrospective Reader
84
84
85
85
1 ) train a sketchy reader (` sh_albert_cls.sh ` )
86
86
@@ -114,7 +114,7 @@ SQuAD 2.0 Dev Results:
114
114
year={2020}
115
115
}
116
116
```
117
- ### Related Records (best)
117
+ ## Related Records (best)
118
118
119
119
[ CMRC 2017] ( https://hfl-rc.github.io/cmrc2017/leaderboard/ ) : The ** best** single model (2017).
120
120
@@ -126,7 +126,7 @@ SQuAD 2.0 Dev Results:
126
126
127
127
[ GLUE] ( https://gluebenchmark.com/ ) : The ** 3rd best** among all submissions (early 2019).
128
128
129
- ### Contact
129
+ ## Contact
130
130
131
131
Feel free to email zhangzs [ at] sjtu.edu.cn if you have any questions.
132
132
0 commit comments