
Mathematical modeling and control of
nematode impact on banana production

1 Model formulation

Herein, we formulate a mathematical model describes the infestation dynamics of
roots of banana by nematodes during the cropping season in a plantation. The model
is based on the life cycle of Radopholus Similis presented in the previous section. We use
the compartmental modeling approach with a progression of stages.

To build the model, we make the additional modelling assumptions described be-
low:

1. The nematode population is divided into two compartments: free nematodes in
the soil (NF) and infesting nematodes in the roots (NI).

2. The root biomass of banana plants in the plantation is subdivided into two com-
partments: healthy roots (S) and infected roots (I).

Moreover, we define by X = NI
I the infestation density.

3. Healthy roots are produced at a constant rate (Λ)

4. Free nematodes (NF) infest the healthy roots (rate βF) and immediately, we have
two different losses:

i) The lost of healthy roots that become infected roots denoted by −βFNFS

ii) The lost of free nematodes that become infesting nematodes at the rate
−αβFNFS, where α being conversion of the number of nematodes per root
unit.

They undergo natural mortality (rate νF).

5. Infesting pests (NI) feed on the plant roots with a Holling type II-like functional

response dN
I

a + I
that is well-suited for invertebrates [?]. They undergo natural

mortality (rate νI). This mortality rate differs from the mortality rate in the soil
because the environments are different. The root, which serves both as host and
food for the nematode, is more favourable to pest survival than the soil (νI < νF).
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6. Infesting nematodes reproduce inside the roots following the logistic function(
r + ρd

I
a + I

)
NI

(
1 −
X

K

)
, where ρ, K and r are respectively the conversion rate of

ingested biomass into pests, the maximum reception capacity of the environment
and the intrinsic growth rate of infesting nematodes that does not depend on
roots consumption.

7. Infesting pests (NI) infest the healthy roots (rate βI) and immediately, we have the
lost of healthy roots that become infected roots denoted by −βINIS.

8. When the roots no longer present favorable living and feeding conditions, the
nematodes abandon it and enter the soil in search of a new root that they infest

immediately at the rate
(
γ + γ

X

K

)
. γ is the natural exit rate of infesting nematodes.

9. Free nematodes infest the infected roots (rate βF) and immediately, we have the
lost of free nematodes that become infesting nematodes denoted by −αβFeNFI
and e < 1 since healthy roots are more attacked compared to infected roots due to
infection.

10. All roots undergo natural mortality (rate µ).

Under the above hypotheses, we construct the compartmental model 1.

S I

mortality

R
oo

ts

NF NI

Λ

N
em

at
od

es

N=NF+NI

mortality

r

d
Roots
consump-

tion

growth

βF α

e

infestation

βI

γ(X)

migration

µ µ

νF νI

From the compartmental model in Figure 1, we derive the following system of
nonlinear ordinary differential equations:
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dS
dt

= Λ − (βFNF + βINI)S − µS

dI
dt

= (βFNF + βINI)S − µI − dNI
I

a + I
dNF

dt
= −αβF(S + eI)NF +

(
γ + γ

NI

KI

)
NI − νFNF

dNI

dt
= αβF(S + eI)NF −

(
γ + γ

NI

KI

)
NI +

(
r + ρd

I
a + I

)
NI

(
1 −

NI

KI

)
− νINI

Full model
m

Reduced model
(Tikhonov’s theorem)

The variables and parameters used in above model are described in the table below

Table 1: Description of model parameters

Symbol Meaning Value Source
Λ Recruitment 300 g.day−1 Assumed
βF Infection rate of NF 1 × 10−7nematode−1.day−1 Assumed
βI = β Infection rate of NI 1 × 10−7nematode−1.day−1 Assumed
α′ Conversion of the number 100 g−1 re f 1

of nematodes per root unit
µ Mortality rate of root 0.05 day−1 Assumed
d Consumption rate 2.10−4g.nematode−1.day−1 re f 2

a Half-saturation constant 60 g re f 2

ρ Conversion rate of ingested roots 400 nematode.g−1 re f 2

r Intrinsic growth rate of NI 0.15 day−1 Assumed
K Maximum capacity 1000 nematode.g−1 Assumed
γ Natural exit rate of NI 0.02 day−1 Assumed
e Probability of reinfection 0.0002 Assumed
νI Mortality rate of NI 0.045 day−1 re f 2

νF Mortality rate of NF 0.0495 day−1 re f 2

2 Optimal control strategy

2.1 Problem statement

In this section, we extend the above reduced system to include a continuous optimal
control problem which consists in maximizing the yield, while minimising the controls
costs as well as the infestation for the next cropping season using biostimulants. This
control technique has been developed as an environmentally safe bio-insecticide that
is sprayed but not toxic to workers and reduces nematodes fertility (infestation rate)
when drilling the entry hole in the roots. Denote by u(t) the effort made to reduce
the nematode infestation over a time interval [0, t f ] where t f denotes the end time of
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cropping season. Hence we obtain the following controlled system:

Ṡ = Λ − (1 − u)βNS − µS (1a)

İ = (1 − u)βNS − µI − dN
I

a + I
(1b)

Ṅ =
(
r + ρd

I
a + I

)
N

(
1 −

N
KI

)
− µiN (1c)

The set of admissible controls is defined as follows

U = {u ∈ L∞([0, t f ]) : 0 ≤ u ≤ umax,∀t ∈ [0, t f ]} (2)

The optimal control problem is then formulated as follows.

Problem 1. Find an admissible control u∗ ∈ U and the corresponding state variable x∗ =

(S∗, I∗,N∗) minimizing the following objective functional:

J(u) =

∫ t f

0
L(x(t),u(t))dt + ψ(x(t f )) (3)

with

L(x(t),u(t)) = Buu(t) − BSS(t) and ψ(x(t f )) = BII(t f )

and x(t) solution of system (1)

This type of problem is called a Bolza optimal control. The first term, i.e. the integral,
represents the production losses over the entire cultivation period, with BS the control
weight constant of healthy roots. The second represents the infected roots which remain
after harvest in the plantation, weighted by the parameter BI. Finally, J represents the
production losses over the entire cultivation period, penalized by the infected final
roots.

Let us consider the vector x = (S, I,N)T. In vector notation the system (1) takes the
form

ẋ = f (x) + ug(x)

with

f(x) =


Λ − βNS

βNS − µI − dN I
a+I(

r + ρd I
a+I

)
N

(
1 − N

KI

)
− µiN

 and g(x) =


βNS
−βNS

0

 .
2.2 Necessary optimal conditions

The following theorem establish the existence of an optimal control for the problem (1).
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Theorem 1. There exists an optimal control u∗ ∈ U and a corresponding solution x∗ =

(S∗, I∗,N∗) of the problem (1) that minimizes the cost functionJ such thatJ(u∗) = min
0≤u(t)≤umax

J(u).

Proof. Fleming and Rishel [1] imposes three conditions:

1. The set of controls and corresponding state variables is non-empty.

2. The control setU is closed and convex.

3. The integrand L of the objective functional is convex on U and there exist non
negatif constants c1 > 0, c2 and η > 1 satisfying L(x(t),u(t)) ≥ c1|u|η/2 − c2.

Firstly, an existence result in Lukes ([2]; Theorem 9.2.1) for the controlled system (1)
with bounded coefficients on the finite interval time is used to give the first condition.
Secondly, let us consider the functional

φt : L∞([0,T])→ [0,umax]

u(.) 7→ u(t),

we have |φt(u)| = |u(t)| ≤ umax, ∀w ∈ L∞([0,T]). Therefore φt is linear continuous. From
this continuity, we deduce that φ−1

t ([0,umax]) is closed and then U is closed. Also for
(u1,u1) ∈ Γ and α ∈ [0, 1], we have :

∀t ∈ [0,T], αu1(t) + (1 − α)u2(t) ≤ αumax + (1 − α)umax = umax.

We deduce that
αu1 + (1 − α)u2 ∈ U

and then U is convex. So the second condition is satisfied. For the third condition, it
is easy to see that the integrand function L of the objective functional is convex in the
controls since it is linear. Also, for c1 = Bu, and η = 2, there exist c2 = BSA such that

L(u(t),S(t)) = Buu − BSS ≥ c1|u|η/2 − c2

�

The existence of the optimal control being established, we now apply the Pontrya-
gin’s Maximum Principle [3] to establish the first-order necessary optimality conditions.
This optimality conditions is use to compute the optimal control u∗ of problem (1). This
principle transforms the optimization problem into a problem of determining the min-
imum with respect to u∗ of the Hamiltonian of problem (1). Let λ = (λ1, λ2, λ3) the
adjoint variables, λ0

∈ R and 〈.〉 the scalar product in R3. The Hamiltonian of problem
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(1) is define as follows

H(x,u, λ, λ0) =λ0[Buu − BSS] + 〈λ, f (x) + ug(x)〉

=λ0[Buu − BSS] + λ1[Λ − (1 − u)βNS − µS]

+ λ2

[
(1 − u)βNS − µI − dN

I
a + I

]
(4)

+ λ3

[(
r + ρd

I
a + I

)
N

(
1 −

N
KI

)
− µiN

]
.

According to the Pontryagin’s Maximum Principle,we obtain the following theorem

Theorem 2. Let u∗(.) be an optimal control and x∗ = (S∗, I∗,N∗) the associated trajectory on
[0, t f ] starting from x0. Then we have the following conditions:

• There exists an absolutely continuous vector mapping λ : [0, t f ]→ R3 called the adjoint

vector, which satisfies the following adjoint equation λ̇ =
∂H
∂x

(x(t),u(t), λ(t), λ0) ∀t ∈
[0, t f ], i.e:

λ̇1 = BS + (1 − u)βN(λ1 − λ2) + µλ1

λ̇2 =
(
µ + da N

(a+I)2

)
λ2 −

(
ρda N

(a+I)2

(
1 − N

KI

)
+ 1

K

(
N
I

)2 (
r + ρd I

a+I

))
λ3

λ̇3 = (1 − u)βS(λ1 − λ2) + d I
a+Iλ2 −

((
r + ρd I

a+I

) (
1 − 2 N

KI

)
− µi

)
λ3

(5)

• There exists λ0
≥ 0 such that the vector (λ(.), λ0) is non trivial i.e (λ(.), λ0) , (0, 0, 0, 0).

• The transversality conditions satisfies λ(t f ) = ∇ψ(x(T))λ0, that is

λ1(t f ) = λ3(t f ) = 0 and λ2(t f ) = B2λ
0. (6)

• The control u(.) satisfies the minimisation condition:

u∗(t) ∈ arg min
ω∈U
H(x(t), ω(t), λ(t), λ0), ∀t ∈ [0, t f ] (7)

Remark 1. • An extremal trajectory of the optimal problem (1) is defined as a quadruplet
(x(.),u(.), λ(.), λ0) satisfying the state equation (1) and equations (4)-(7).

• An extremal trajectory of the optimal problem (1) does not necessarily correspond to an
optimal trajectory (the PMP is only a first-order necessary condition).

If λ0 = 0, then we have λ(t f ) = 0, which contradicts the third condition of theorem
(2). Hence λ0 , 0, and we choose λ0 = 1. Now, asH is linear of u, its minimization then
depends on the sign of

∂uH(x(t), ω(t), λ(t)) = Bu − βNS(λ2 − λ1)
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Hence, by introduce the switching function

φ(t) = Bu − βNS(λ2 − λ1),

we characterise the optimal control u∗ as follows

u∗(t) =


0 if φ(t) > 0

unde f ined if φ(t) = 0

umax if φ(t) < 0

2.3 Singular control

A control is called singular if there exists a nonempty interval [t1, t2] ⊂ [0, t f ] such that
φ(t) = 0 for allt ∈ [t1, t2].

Theorem 3. If there exists a singular control u∗(t) on [t1, t2], then it is order 1 and locally
minimizing . Its expression is given by

u∗sing(t) = 1 +
D(x, λ)
F (x, λ)

,

where

D(x, λ) =
ρda

(a + I)2

[
µI + dN

I
a + I

] (
1 −

N
KI

)
+

1
KI2

[
I
dN
dt

+ µNI + dN2 I
a + I

] (
r + ρd

I
a + I

)
+

Λ

S2 (Λ − µS)

− β

[
S

dN
dt

+ (Λ − µS)N
]
Y −

da
(a + I)3 βNS

[
(a + I)

dN
dt

+ 2
(
µI + dN

I
a + I

)
N
]
λ2

−
da

(a + I)2

[
−

(
dN
dt

+
ΛN

S

)
+ βN2S(µλ2 + B1)

]
+

(
1 −

N
KI

) ρda
(a + I)3 βNS

(
(a + I)

dN
dt

+ 2
(
µIN + dN2 I

a + I

))
λ3

−
ρda

(a + I)2
1

KI2 βN2S
(
I
dN
dt

+ µIN + dN2 I
a + I

)
λ3

+
ρda

(a + I)2

(
1 −

N
KI

)
βN2S

[
d

I
a + I

λ2 −

((
r + ρd

I
a + I

) (
1 −

2N
KI

)
− µi

)
λ3

]
+

2
KI3 βN2S

(
I
dN
dt

+ µIN + dN2 I
a + I

) (
r + ρd

I
a + I

)
λ3

−
1

KI2

ρda
(a + I)2 βN3S

(
µI + dN

I
a + I

)
λ3

+
1

KI2 βN3S
(
r + ρd

I
a + I

) [
d

I
a + I

λ2 −

((
r + ρd

I
a + I

) (
1 −

2N
KI

)
− µi

)
λ3

]
,

F (x, λ) = − 2
ρda

(a + I)2βNS
(
1 −

N
KI

) [
1 +

βN2Sλ2

a + I

]
−

2
KI2βN2S

(
r + ρd

I
a + I

) [
1 +

βN2Sλ3

I

]
− 2

ΛβN
S
− β

dN
dt

+ 2
da

(a + I)2β
2N3S2

[
λ2

a + I
+
ρNλ3

KI2

]
,
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Y =

(
da

N
(a + I)2λ2 −

(
ρda

N
(a + I)2

(
1 −

N
KI

)
+

1
K

(N
I

)2 (
r + ρd

I
a + I

))
λ3 − B1

)
Proof. Suppose that there exists a singular control u∗sing for all t ∈ [t1, t2]. Then we
necessarily have φ(t) = 0 for all t ∈ [t1, t2]. Using this fact that φ(t) = 0 for all t ∈ [t1, t2],
we obtain

λ2 − λ1 =
Bu

βNS
(8)

Thus, differentiating the switching function with respect to time t along the singular
control and the adjoint system (13) and using equation (8), we obtain:

φ̇(t) = −
(
r + ρd

I
a + I

) (
1 −

N
KI

)
+ µi −

Λ

S
− βNSY

Now, differentiating φ a second time since the expression of its first differential does
not explicitly depend on the control, we obtain:

φ̈(t) = −
(
r + ρd

I
a + I

) (
1 −

N
KI

)
+ µi −

Λ

S

− βNS
[
da

N
(a + I)2λ2 −

(
ρda

N
(a + I)2

(
1 −

N
KI

)
+

1
K

(N
I

)2 (
r + ρd

I
a + I

))
λ3 − B1

]
+

Λ

S2 (Λ − (1 − u)βNS − µS) − β
[
S

dN
dt

+ (Λ − (1 − u)βNS − µS)N
]
Y

−
da

(a + I)3 βNS
[
(a + I)

dN
dt
− 2

(
(1 − u)βNS − µI − dN

I
a + I

)
N
]
λ2 − da

N
(a + I)2 βNS(Y + µλ2 + B1)

+
(
1 −

N
KI

) ρda
(a + I)3 βNS

(
(a + I)

dN
dt
− 2

(
(1 − u)βN2S − µIN − dN2 I

a + I

))
λ3

− ρda
N

(a + I)2
1

KI2 βNS
(
I
dN
dt
− (1 − u)βN2S + µIN + dN2 I

a + I

)
λ3

+ ρda
N

(a + I)2

(
1 −

N
KI

)
βNS

[
(1 − u)βS(λ1 − λ2) + d

I
a + I

λ2 −

((
r + ρd

I
a + I

) (
1 −

2N
KI

)
− µi

)
λ3

]
+

2
KI2

(
I
dN
dt
− (1 − u)βN2S + µIN + dN2 I

a + I

) (N
I

) (
r + ρd

I
a + I

)
λ3βNS

+
1
K

(N
I

)2 ρda
(a + I)2

(
(1 − u)βNS + µI + dN

I
a + I

)
λ3βNS

+
1
K

(N
I

)2 (
r + ρd

I
a + I

) [
(1 − u)βS(λ1 − λ2) + d

I
a + I

λ2 −

((
r + ρd

I
a + I

) (
1 −

2N
KI

)
− µi

)
λ3

]
βNS

As φ̇(t) = 0 for all t ∈ [t1, t2], we have:

βNSY = −
(
r + ρd

I
a + I

) (
1 −

N
KI

)
+ µi −

Λ

S
= −

(
1
N

dN
dt

+
Λ

S

)
(9)

Then, substituting equation (9) into the above expression of φ̈(t), we obtain:

φ̈(t) = D(x, λ) + (1 − u)F (x, λ)
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Hence, as φ̈(t) = 0, we obtain the expression of singular control as follows

u∗sing(t) = 1 +
D(x, λ)
F (x, λ)

Since 2 successive derivatives of the switching function made it possible to achieve
singular control, then this singular control is of order 1. �

Therefore, the structure of the optimal control u∗ is given by:

u∗(t) =


0 if φ(t) > 0

u∗sing(t) if φ(t) = 0

umax if φ(t) < 0

2.4 Numerical solutions

For all numerical simulations, we take BS = 2.
1st case In this first case, we take Bu = 1000 and BI = 5.

Figure 1: Simulations of system (1) .
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