-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_verify.py
404 lines (362 loc) · 13.9 KB
/
run_verify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numpy as np
import logging
import time
import os
import pickle
import argparse
import cv2
import sys
import re
from tqdm import tqdm
import sys
from deeploader.util.verification import verification, compute_distance
from deeploader.util.distance import get_distance
from deeploader.util.opencv import cvCopy
from deeploader.util.fileutil import makedirs
def parse_line(line):
line = line.strip()
# [0|1] path1, path2
exp = r'^(\d),([^,]*),([^,]*)'
pattern = re.compile(exp, re.I) # re.I Ignore case
m = pattern.match(line)
if m:
issame = int(m.group(1))
issame = True if issame == 1 else False
rel_path1 = m.group(2).strip()
rel_path2 = m.group(3).strip()
return issame, rel_path1, rel_path2
# lfw
splits = line.split()
# skip line
if len(splits) < 3:
return None
# name id1 id2
if len(splits) == 3:
pair = (True, splits[0], splits[1], splits[0], splits[2])
# name1 id1 name2 id2
else:
pair = (False, splits[0], splits[1], splits[2], splits[3])
rel_path1 = '%s/%s_%04d.jpg' % (pair[1], pair[1], int(pair[2]))
rel_path2 = '%s/%s_%04d.jpg' % (pair[3], pair[3], int(pair[4]))
return pair[0], rel_path1, rel_path2
def load_image_list(pair_list):
img_list = []
for pair in pair_list:
# skip invalid pairs
if not os.path.exists(pair[0]) or not os.path.exists(pair[1]):
continue
img1 = cv2.imread(pair[0])
#img1 = cv2.cvtColor(img1, cv2.COLOR_RGB2BGR)
img2 = cv2.imread(pair[1])
#img2 = cv2.cvtColor(img2, cv2.COLOR_RGB2BGR)
#print(img1.shape)
img_list.append([img1, img2, pair[0], pair[1]])
return img_list
def load_ytf_pairs(path, prefix):
pos_list_ = []
neg_list_ = []
with open(path, 'r') as f:
for line in f.readlines():
line = line.strip()
flag, a, b = line.split(',')
flag = int(flag)
a = os.path.join(prefix, a)
b = os.path.join(prefix, b)
if flag == 1:
pos_list_.append([a, b])
else:
neg_list_.append([a, b])
pos_img = load_image_list(pos_list_)
neg_img = load_image_list(neg_list_)
return pos_img, neg_img
def load_image_paris(pair_path, prefix):
pair_list = []
# parse pairs
with open(pair_path, 'r') as f:
for line in f.readlines():
pair = parse_line(line)
if pair is not None:
pair_list.append(pair)
# print(pair)
#print('#pairs:%d' % len(pair_list))
# compute feature
pos_img = []
neg_img = []
count = 0
for pair in pair_list:
count += 1
#rel_path1 = '%s/%s_%04d.jpg' % (pair[1], pair[1], int(pair[2]))
#rel_path2 = '%s/%s_%04d.jpg' % (pair[3], pair[3], int(pair[4]))
rel_path1 = pair[1]
rel_path2 = pair[2]
img_path1 = '%s/%s' % (prefix, rel_path1)
img_path2 = '%s/%s' % (prefix, rel_path2)
# skip invalid pairs
if not os.path.exists(img_path1):
print(img_path1)
if not os.path.exists(img_path2):
print(img_path2)
if not os.path.exists(img_path1) or not os.path.exists(img_path2):
continue
img1 = cv2.imread(img_path1)
#img1 = cv2.cvtColor(img1, cv2.COLOR_RGB2BGR)
img2 = cv2.imread(img_path2)
#img2 = cv2.cvtColor(img2, cv2.COLOR_RGB2BGR)
#print(img1.shape)
if pair[0]:
pos_img.append([img1, img2, rel_path1, rel_path2])
else:
neg_img.append([img1, img2, rel_path1, rel_path2])
return pos_img, neg_img
def extract_feature_each(extractor, img_list):
feat_list = []
n = len(img_list)
idx = 1
#bar = tqdm(total=n)
for pair in img_list:
img1 = pair[0]
img2 = pair[1]
feat1 = extractor.extract(img1)
feat2 = extractor.extract(img2)
feat_list.append([feat1, feat2])
if idx > 1:
print('{}'.format('\b'*10))
print('{}/{}'.format(idx, n), end='')
idx += 1
#bar.update(1)
#bar.close()
return feat_list
def extract_feature_batch(extractor, pair_list, size = 0):
batch_size = extractor.batch_size
feat_list = []
npairs = len(pair_list)
if size == 0:
size = npairs*2
size = min(size, npairs*2)
npairs_todo = size // 2
nbatch = (size + batch_size - 1) // batch_size
#bar = tqdm(total=nbatch)
for batch in range(nbatch):
# make a batch
x_list = []
for i in range(0, batch_size, 2):
pairid = (batch * batch_size + i) // 2
if pairid >= npairs:
pairid = npairs - 1
x_list.append(pair_list[pairid][0])
x_list.append(pair_list[pairid][1])
#
x_batch = np.stack(x_list, axis=0)
feat = extractor.extract(x_batch)
for i in range(0,batch_size,2):
a = feat[i,:]
p = feat[i+1,:]
if len(feat_list) < npairs_todo:
feat_list.append([a, p])
#bar.update(1)
#bar.close()
return feat_list
def extract_feature(extractor, pair_list, size = 0):
batch_size = extractor.batch_size
if batch_size > 1:
return extract_feature_batch(extractor, pair_list, size)
return extract_feature_each(extractor, pair_list)
def crop_pair_list(img_list, imsize):
"""
crop images
"""
out_list = []
h, w, c = img_list[0][0].shape
x1 = int((w - imsize[0])/2)
y1 = int((h - imsize[1])/2)
for pair in img_list:
img1 = pair[0]
img2 = pair[1]
img1 = img1[y1:(y1+imsize[1]),x1:(x1+imsize[0]),:]
img2 = img2[y1:(y1+imsize[1]),x1:(x1+imsize[0]),:]
out_list.append([img1, img2])
#print(img1.shape)
return out_list
def norm_pair_list(img_list):
"""
norm images
"""
out_list = []
for pair in img_list:
img1 = pair[0]
img2 = pair[1]
img1 = ( np.float32(img1) - 127.5 ) / 128
img2 = ( np.float32(img2) - 127.5 ) / 128
out_list.append([img1, img2])
return out_list
def load_mxnet_bin(path):
import mxnet as mx
bins, issame_list = pickle.load(open(path, 'rb'))
pos_img = []
neg_img = []
for i in range(len(issame_list)):
_bin = bins[i*2]
img1 = mx.image.imdecode(_bin).asnumpy()
_bin = bins[i*2+1]
img2 = mx.image.imdecode(_bin).asnumpy()
#print('{} {}'.format(i,img1.shape))
img1 = cv2.cvtColor(img1, cv2.COLOR_RGB2BGR)
img2 = cv2.cvtColor(img2, cv2.COLOR_RGB2BGR)
if issame_list[i]:
pos_img.append([img1, img2])
else:
neg_img.append([img1, img2])
return pos_img, neg_img
def draw_error_pair(pair, dist):
h, w, c = pair[0].shape
canvas = np.zeros((h, w*2, c), dtype=np.uint8)
cvCopy(pair[0], canvas, (0,0,h,w))
#print(canvas.shape)
cvCopy(pair[1], canvas, (0,w,h,w))
cv2.putText(canvas, '%.3f' % dist, (5, 20), 0, 0.6, (0,255,0), 2)
return canvas
def get_verify_args():
parser = argparse.ArgumentParser(description='face verification', conflict_handler='resolve')
parser.add_argument("--type", help="caffe | tensorflow | mxnet")
parser.add_argument("--test_set", help="lfw | cfp | ytf")
parser.add_argument("--data", help="lfw.np or pair.txt")
parser.add_argument("--prefix", help="data prefix")
parser.add_argument("--model_path", help= 'specify which model to test ')
parser.add_argument('--image_size', default="112, 96", help='image size height, width')
parser.add_argument('--net_depth', default=50, help='resnet depth, default is 50')
parser.add_argument('--batch_size', type=int, default=64, help='batch size to train network')
parser.add_argument("--model_name", help= 'specify which model to test \n'
' centerface\n'
' sphereface\n'
' AMSoftmax\n'
' arcface\n')
parser.add_argument("--dist_type", default='cosine', help="distance measure ['cosine', 'L2', 'SSD']")
parser.add_argument("--do_mirror", default=False, help="mirror image and concatinate features")
parser.add_argument("--do_norm", default=True, help="norm image before feed to nets")
parser.add_argument("--embed_name", help= 'specify output blob name')
parser.add_argument("--error_dir", default='', help="directory to save error pairs")
return parser
def get_extractor(args):
# model
if args.type == 'caffe':
from deeploader.plats.caffe.caffe_model_factory import model_factory
extractor, args.image_size = model_factory(args.model_name, args.do_mirror)
print('Testing model\t: %s' % (extractor.weight))
# do norm
args.do_norm = True
elif args.type == 'tensorflow':
from deeploader.plats.tensorflow.resnet50_extractor import get_extractor
extractor = get_extractor(args)
# do norm
args.do_norm = True
elif args.type == 'mxnet':
from deeploader.plats.mxnet.mxnet_extractor import MxnetExtractor
extractor = MxnetExtractor(args.model_path, args.batch_size, args.image_size, args.embed_name)
return extractor
def do_verify(args, extractor):
output_dir = '.'
# parse args
image_size = args.image_size
model_name = args.model_name
test_set = args.test_set
dist_type = args.dist_type
do_mirror = args.do_mirror
# load images
data_ext = os.path.splitext(args.data)[1]
if '.np' == data_ext > 0:
pos_img, neg_img = pickle.load(open(args.data, 'rb'))
#pos_img, neg_img = pickle.load(open(lfw_data, 'rb'), encoding='iso-8859-1')
elif '.txt' == data_ext:
if args.test_set == 'ytf':
pos_img, neg_img = load_ytf_pairs(args.data, args.prefix)
else:
pos_img, neg_img = load_image_paris(args.data, args.prefix)
elif '.bin' == data_ext:
pos_img, neg_img = load_mxnet_bin(args.data)
else:
if args.test_set.startswith('cfp'):
from deeploader.dataset.dataset_cfp import CFPDataset
pos_list_, neg_list_ = CFPDataset(args.data).get_pairs('FP')
pos_img = load_image_list(pos_list_)
neg_img = load_image_list(neg_list_)
# save input images
pos_raw = pos_img
neg_raw = neg_img
# abstract
print('Dataset \t: %s (%s,%s)' % (args.test_set, args.data, args.prefix))
print('Pairs \t: %d/%d' % (len(pos_img), len(neg_img)))
print('Testing \t: %s' % model_name)
print('Distance \t: %s' % dist_type)
print('Do mirror\t: {}'.format(do_mirror))
print('Image size\t: {}'.format(image_size))
print('Do norm \t: {}'.format(args.do_norm))
print('Output \t: {}'.format(args.error_dir))
# crop
pos_img = crop_pair_list(pos_img, image_size)
neg_img = crop_pair_list(neg_img, image_size)
# norm
if args.do_norm == True:
print('Norm images')
pos_img = norm_pair_list(pos_img)
neg_img = norm_pair_list(neg_img)
# compute feature
print('Extracting features ...')
pos_list = extract_feature(extractor, pos_img)
print(' Done positive pairs')
neg_list = extract_feature(extractor, neg_img)
print(' Done negative pairs')
# evaluate
print('Evaluating ...')
precision, std, threshold, pos, neg, _ = verification(pos_list, neg_list, dist_type = dist_type)
# _, title = os.path.split(extractor.weight)
#draw_chart(title, output_dir, {'pos': pos, 'neg': neg}, precision, threshold)
print('------------------------------------------------------------')
print('Precision on %s : %1.5f+-%1.5f \nBest threshold : %f' % (args.test_set, precision, std, threshold))
# save errors
if args.error_dir:
pos_dist, neg_dist = compute_distance(pos_list, neg_list, dist_type)
h, w, c = pos_raw[0][0].shape
# pos
target_dir = os.path.join(args.error_dir, 'pos')
false_neg = 0
for i in range(len(pos_dist)):
dist = pos_dist[i][0]
if dist < threshold:
continue
false_neg += 1
pair = pos_raw[i]
# save
canvas = draw_error_pair(pair, dist)
#img_path = target_dir + '/%.3f_%d_%d.jpg' % (dist, i, false_neg)
img_path = target_dir + '/%d.jpg' % (i)
makedirs(img_path)
cv2.imwrite(img_path, canvas)
# neg
target_dir = os.path.join(args.error_dir, 'neg')
false_pos = 0
for i in range(len(neg_dist)):
dist = neg_dist[i][0]
if dist > threshold:
continue
false_pos += 1
pair = neg_raw[i]
# save
canvas = draw_error_pair(pair, dist)
#img_path = target_dir + '/%.3f_%d_%d.jpg' % (dist, i, false_pos)
img_path = target_dir + '/%d.jpg' % (i)
makedirs(img_path)
cv2.imwrite(img_path, canvas)
return precision, std
if __name__ == '__main__':
parser = get_verify_args()
args = parser.parse_args()
# parse args
image_size = args.image_size.split(',')
args.image_size = (int(image_size[1]), int(image_size[0]))
extractor = get_extractor(args)
do_verify(args, extractor)